Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import datasets | |
import numpy as np | |
import pytest | |
from transformers import is_torch_available, is_vision_available | |
from transformers.image_utils import ChannelDimension, get_channel_dimension_axis, make_list_of_images | |
from transformers.testing_utils import require_torch, require_vision | |
if is_torch_available(): | |
import torch | |
if is_vision_available(): | |
import PIL.Image | |
from transformers import ImageFeatureExtractionMixin | |
from transformers.image_utils import get_image_size, infer_channel_dimension_format, load_image | |
def get_random_image(height, width): | |
random_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8) | |
return PIL.Image.fromarray(random_array) | |
class ImageFeatureExtractionTester(unittest.TestCase): | |
def test_conversion_image_to_array(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
image = get_random_image(16, 32) | |
# Conversion with defaults (rescale + channel first) | |
array1 = feature_extractor.to_numpy_array(image) | |
self.assertTrue(array1.dtype, np.float32) | |
self.assertEqual(array1.shape, (3, 16, 32)) | |
# Conversion with rescale and not channel first | |
array2 = feature_extractor.to_numpy_array(image, channel_first=False) | |
self.assertTrue(array2.dtype, np.float32) | |
self.assertEqual(array2.shape, (16, 32, 3)) | |
self.assertTrue(np.array_equal(array1, array2.transpose(2, 0, 1))) | |
# Conversion with no rescale and channel first | |
array3 = feature_extractor.to_numpy_array(image, rescale=False) | |
self.assertTrue(array3.dtype, np.uint8) | |
self.assertEqual(array3.shape, (3, 16, 32)) | |
self.assertTrue(np.array_equal(array1, array3.astype(np.float32) * (1 / 255.0))) | |
# Conversion with no rescale and not channel first | |
array4 = feature_extractor.to_numpy_array(image, rescale=False, channel_first=False) | |
self.assertTrue(array4.dtype, np.uint8) | |
self.assertEqual(array4.shape, (16, 32, 3)) | |
self.assertTrue(np.array_equal(array2, array4.astype(np.float32) * (1 / 255.0))) | |
def test_conversion_array_to_array(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
array = np.random.randint(0, 256, (16, 32, 3), dtype=np.uint8) | |
# By default, rescale (for an array of ints) and channel permute | |
array1 = feature_extractor.to_numpy_array(array) | |
self.assertTrue(array1.dtype, np.float32) | |
self.assertEqual(array1.shape, (3, 16, 32)) | |
self.assertTrue(np.array_equal(array1, array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0))) | |
# Same with no permute | |
array2 = feature_extractor.to_numpy_array(array, channel_first=False) | |
self.assertTrue(array2.dtype, np.float32) | |
self.assertEqual(array2.shape, (16, 32, 3)) | |
self.assertTrue(np.array_equal(array2, array.astype(np.float32) * (1 / 255.0))) | |
# Force rescale to False | |
array3 = feature_extractor.to_numpy_array(array, rescale=False) | |
self.assertTrue(array3.dtype, np.uint8) | |
self.assertEqual(array3.shape, (3, 16, 32)) | |
self.assertTrue(np.array_equal(array3, array.transpose(2, 0, 1))) | |
# Force rescale to False and no channel permute | |
array4 = feature_extractor.to_numpy_array(array, rescale=False, channel_first=False) | |
self.assertTrue(array4.dtype, np.uint8) | |
self.assertEqual(array4.shape, (16, 32, 3)) | |
self.assertTrue(np.array_equal(array4, array)) | |
# Now test the default rescale for a float array (defaults to False) | |
array5 = feature_extractor.to_numpy_array(array2) | |
self.assertTrue(array5.dtype, np.float32) | |
self.assertEqual(array5.shape, (3, 16, 32)) | |
self.assertTrue(np.array_equal(array5, array1)) | |
def test_make_list_of_images_numpy(self): | |
# Test a single image is converted to a list of 1 image | |
images = np.random.randint(0, 256, (16, 32, 3)) | |
images_list = make_list_of_images(images) | |
self.assertEqual(len(images_list), 1) | |
self.assertTrue(np.array_equal(images_list[0], images)) | |
self.assertIsInstance(images_list, list) | |
# Test a batch of images is converted to a list of images | |
images = np.random.randint(0, 256, (4, 16, 32, 3)) | |
images_list = make_list_of_images(images) | |
self.assertEqual(len(images_list), 4) | |
self.assertTrue(np.array_equal(images_list[0], images[0])) | |
self.assertIsInstance(images_list, list) | |
# Test a list of images is not modified | |
images = [np.random.randint(0, 256, (16, 32, 3)) for _ in range(4)] | |
images_list = make_list_of_images(images) | |
self.assertEqual(len(images_list), 4) | |
self.assertTrue(np.array_equal(images_list[0], images[0])) | |
self.assertIsInstance(images_list, list) | |
# Test batched masks with no channel dimension are converted to a list of masks | |
masks = np.random.randint(0, 2, (4, 16, 32)) | |
masks_list = make_list_of_images(masks, expected_ndims=2) | |
self.assertEqual(len(masks_list), 4) | |
self.assertTrue(np.array_equal(masks_list[0], masks[0])) | |
self.assertIsInstance(masks_list, list) | |
def test_make_list_of_images_torch(self): | |
# Test a single image is converted to a list of 1 image | |
images = torch.randint(0, 256, (16, 32, 3)) | |
images_list = make_list_of_images(images) | |
self.assertEqual(len(images_list), 1) | |
self.assertTrue(np.array_equal(images_list[0], images)) | |
self.assertIsInstance(images_list, list) | |
# Test a batch of images is converted to a list of images | |
images = torch.randint(0, 256, (4, 16, 32, 3)) | |
images_list = make_list_of_images(images) | |
self.assertEqual(len(images_list), 4) | |
self.assertTrue(np.array_equal(images_list[0], images[0])) | |
self.assertIsInstance(images_list, list) | |
# Test a list of images is left unchanged | |
images = [torch.randint(0, 256, (16, 32, 3)) for _ in range(4)] | |
images_list = make_list_of_images(images) | |
self.assertEqual(len(images_list), 4) | |
self.assertTrue(np.array_equal(images_list[0], images[0])) | |
self.assertIsInstance(images_list, list) | |
def test_conversion_torch_to_array(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
tensor = torch.randint(0, 256, (16, 32, 3)) | |
array = tensor.numpy() | |
# By default, rescale (for a tensor of ints) and channel permute | |
array1 = feature_extractor.to_numpy_array(array) | |
self.assertTrue(array1.dtype, np.float32) | |
self.assertEqual(array1.shape, (3, 16, 32)) | |
self.assertTrue(np.array_equal(array1, array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0))) | |
# Same with no permute | |
array2 = feature_extractor.to_numpy_array(array, channel_first=False) | |
self.assertTrue(array2.dtype, np.float32) | |
self.assertEqual(array2.shape, (16, 32, 3)) | |
self.assertTrue(np.array_equal(array2, array.astype(np.float32) * (1 / 255.0))) | |
# Force rescale to False | |
array3 = feature_extractor.to_numpy_array(array, rescale=False) | |
self.assertTrue(array3.dtype, np.uint8) | |
self.assertEqual(array3.shape, (3, 16, 32)) | |
self.assertTrue(np.array_equal(array3, array.transpose(2, 0, 1))) | |
# Force rescale to False and no channel permute | |
array4 = feature_extractor.to_numpy_array(array, rescale=False, channel_first=False) | |
self.assertTrue(array4.dtype, np.uint8) | |
self.assertEqual(array4.shape, (16, 32, 3)) | |
self.assertTrue(np.array_equal(array4, array)) | |
# Now test the default rescale for a float tensor (defaults to False) | |
array5 = feature_extractor.to_numpy_array(array2) | |
self.assertTrue(array5.dtype, np.float32) | |
self.assertEqual(array5.shape, (3, 16, 32)) | |
self.assertTrue(np.array_equal(array5, array1)) | |
def test_conversion_image_to_image(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
image = get_random_image(16, 32) | |
# On an image, `to_pil_image1` is a noop. | |
image1 = feature_extractor.to_pil_image(image) | |
self.assertTrue(isinstance(image, PIL.Image.Image)) | |
self.assertTrue(np.array_equal(np.array(image), np.array(image1))) | |
def test_conversion_array_to_image(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
array = np.random.randint(0, 256, (16, 32, 3), dtype=np.uint8) | |
# By default, no rescale (for an array of ints) | |
image1 = feature_extractor.to_pil_image(array) | |
self.assertTrue(isinstance(image1, PIL.Image.Image)) | |
self.assertTrue(np.array_equal(np.array(image1), array)) | |
# If the array is channel-first, proper reordering of the channels is done. | |
image2 = feature_extractor.to_pil_image(array.transpose(2, 0, 1)) | |
self.assertTrue(isinstance(image2, PIL.Image.Image)) | |
self.assertTrue(np.array_equal(np.array(image2), array)) | |
# If the array has floating type, it's rescaled by default. | |
image3 = feature_extractor.to_pil_image(array.astype(np.float32) * (1 / 255.0)) | |
self.assertTrue(isinstance(image3, PIL.Image.Image)) | |
self.assertTrue(np.array_equal(np.array(image3), array)) | |
# You can override the default to rescale. | |
image4 = feature_extractor.to_pil_image(array.astype(np.float32), rescale=False) | |
self.assertTrue(isinstance(image4, PIL.Image.Image)) | |
self.assertTrue(np.array_equal(np.array(image4), array)) | |
# And with floats + channel first. | |
image5 = feature_extractor.to_pil_image(array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0)) | |
self.assertTrue(isinstance(image5, PIL.Image.Image)) | |
self.assertTrue(np.array_equal(np.array(image5), array)) | |
def test_conversion_tensor_to_image(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
tensor = torch.randint(0, 256, (16, 32, 3)) | |
array = tensor.numpy() | |
# By default, no rescale (for a tensor of ints) | |
image1 = feature_extractor.to_pil_image(tensor) | |
self.assertTrue(isinstance(image1, PIL.Image.Image)) | |
self.assertTrue(np.array_equal(np.array(image1), array)) | |
# If the tensor is channel-first, proper reordering of the channels is done. | |
image2 = feature_extractor.to_pil_image(tensor.permute(2, 0, 1)) | |
self.assertTrue(isinstance(image2, PIL.Image.Image)) | |
self.assertTrue(np.array_equal(np.array(image2), array)) | |
# If the tensor has floating type, it's rescaled by default. | |
image3 = feature_extractor.to_pil_image(tensor.float() / 255.0) | |
self.assertTrue(isinstance(image3, PIL.Image.Image)) | |
self.assertTrue(np.array_equal(np.array(image3), array)) | |
# You can override the default to rescale. | |
image4 = feature_extractor.to_pil_image(tensor.float(), rescale=False) | |
self.assertTrue(isinstance(image4, PIL.Image.Image)) | |
self.assertTrue(np.array_equal(np.array(image4), array)) | |
# And with floats + channel first. | |
image5 = feature_extractor.to_pil_image(tensor.permute(2, 0, 1).float() * (1 / 255.0)) | |
self.assertTrue(isinstance(image5, PIL.Image.Image)) | |
self.assertTrue(np.array_equal(np.array(image5), array)) | |
def test_resize_image_and_array(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
image = get_random_image(16, 32) | |
array = np.array(image) | |
# Size can be an int or a tuple of ints. | |
resized_image = feature_extractor.resize(image, 8) | |
self.assertTrue(isinstance(resized_image, PIL.Image.Image)) | |
self.assertEqual(resized_image.size, (8, 8)) | |
resized_image1 = feature_extractor.resize(image, (8, 16)) | |
self.assertTrue(isinstance(resized_image1, PIL.Image.Image)) | |
self.assertEqual(resized_image1.size, (8, 16)) | |
# Passing an array converts it to a PIL Image. | |
resized_image2 = feature_extractor.resize(array, 8) | |
self.assertTrue(isinstance(resized_image2, PIL.Image.Image)) | |
self.assertEqual(resized_image2.size, (8, 8)) | |
self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2))) | |
resized_image3 = feature_extractor.resize(image, (8, 16)) | |
self.assertTrue(isinstance(resized_image3, PIL.Image.Image)) | |
self.assertEqual(resized_image3.size, (8, 16)) | |
self.assertTrue(np.array_equal(np.array(resized_image1), np.array(resized_image3))) | |
def test_resize_image_and_array_non_default_to_square(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
heights_widths = [ | |
# height, width | |
# square image | |
(28, 28), | |
(27, 27), | |
# rectangular image: h < w | |
(28, 34), | |
(29, 35), | |
# rectangular image: h > w | |
(34, 28), | |
(35, 29), | |
] | |
# single integer or single integer in tuple/list | |
sizes = [22, 27, 28, 36, [22], (27,)] | |
for (height, width), size in zip(heights_widths, sizes): | |
for max_size in (None, 37, 1000): | |
image = get_random_image(height, width) | |
array = np.array(image) | |
size = size[0] if isinstance(size, (list, tuple)) else size | |
# Size can be an int or a tuple of ints. | |
# If size is an int, smaller edge of the image will be matched to this number. | |
# i.e, if height > width, then image will be rescaled to (size * height / width, size). | |
if height < width: | |
exp_w, exp_h = (int(size * width / height), size) | |
if max_size is not None and max_size < exp_w: | |
exp_w, exp_h = max_size, int(max_size * exp_h / exp_w) | |
elif width < height: | |
exp_w, exp_h = (size, int(size * height / width)) | |
if max_size is not None and max_size < exp_h: | |
exp_w, exp_h = int(max_size * exp_w / exp_h), max_size | |
else: | |
exp_w, exp_h = (size, size) | |
if max_size is not None and max_size < size: | |
exp_w, exp_h = max_size, max_size | |
resized_image = feature_extractor.resize(image, size=size, default_to_square=False, max_size=max_size) | |
self.assertTrue(isinstance(resized_image, PIL.Image.Image)) | |
self.assertEqual(resized_image.size, (exp_w, exp_h)) | |
# Passing an array converts it to a PIL Image. | |
resized_image2 = feature_extractor.resize(array, size=size, default_to_square=False, max_size=max_size) | |
self.assertTrue(isinstance(resized_image2, PIL.Image.Image)) | |
self.assertEqual(resized_image2.size, (exp_w, exp_h)) | |
self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2))) | |
def test_resize_tensor(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
tensor = torch.randint(0, 256, (16, 32, 3)) | |
array = tensor.numpy() | |
# Size can be an int or a tuple of ints. | |
resized_image = feature_extractor.resize(tensor, 8) | |
self.assertTrue(isinstance(resized_image, PIL.Image.Image)) | |
self.assertEqual(resized_image.size, (8, 8)) | |
resized_image1 = feature_extractor.resize(tensor, (8, 16)) | |
self.assertTrue(isinstance(resized_image1, PIL.Image.Image)) | |
self.assertEqual(resized_image1.size, (8, 16)) | |
# Check we get the same results as with NumPy arrays. | |
resized_image2 = feature_extractor.resize(array, 8) | |
self.assertTrue(np.array_equal(np.array(resized_image), np.array(resized_image2))) | |
resized_image3 = feature_extractor.resize(array, (8, 16)) | |
self.assertTrue(np.array_equal(np.array(resized_image1), np.array(resized_image3))) | |
def test_normalize_image(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
image = get_random_image(16, 32) | |
array = np.array(image) | |
mean = [0.1, 0.5, 0.9] | |
std = [0.2, 0.4, 0.6] | |
# PIL Image are converted to NumPy arrays for the normalization | |
normalized_image = feature_extractor.normalize(image, mean, std) | |
self.assertTrue(isinstance(normalized_image, np.ndarray)) | |
self.assertEqual(normalized_image.shape, (3, 16, 32)) | |
# During the conversion rescale and channel first will be applied. | |
expected = array.transpose(2, 0, 1).astype(np.float32) * (1 / 255.0) | |
np_mean = np.array(mean).astype(np.float32)[:, None, None] | |
np_std = np.array(std).astype(np.float32)[:, None, None] | |
expected = (expected - np_mean) / np_std | |
self.assertTrue(np.array_equal(normalized_image, expected)) | |
def test_normalize_array(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
array = np.random.random((16, 32, 3)) | |
mean = [0.1, 0.5, 0.9] | |
std = [0.2, 0.4, 0.6] | |
# mean and std can be passed as lists or NumPy arrays. | |
expected = (array - np.array(mean)) / np.array(std) | |
normalized_array = feature_extractor.normalize(array, mean, std) | |
self.assertTrue(np.array_equal(normalized_array, expected)) | |
normalized_array = feature_extractor.normalize(array, np.array(mean), np.array(std)) | |
self.assertTrue(np.array_equal(normalized_array, expected)) | |
# Normalize will detect automatically if channel first or channel last is used. | |
array = np.random.random((3, 16, 32)) | |
expected = (array - np.array(mean)[:, None, None]) / np.array(std)[:, None, None] | |
normalized_array = feature_extractor.normalize(array, mean, std) | |
self.assertTrue(np.array_equal(normalized_array, expected)) | |
normalized_array = feature_extractor.normalize(array, np.array(mean), np.array(std)) | |
self.assertTrue(np.array_equal(normalized_array, expected)) | |
def test_normalize_tensor(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
tensor = torch.rand(16, 32, 3) | |
mean = [0.1, 0.5, 0.9] | |
std = [0.2, 0.4, 0.6] | |
# mean and std can be passed as lists or tensors. | |
expected = (tensor - torch.tensor(mean)) / torch.tensor(std) | |
normalized_tensor = feature_extractor.normalize(tensor, mean, std) | |
self.assertTrue(torch.equal(normalized_tensor, expected)) | |
normalized_tensor = feature_extractor.normalize(tensor, torch.tensor(mean), torch.tensor(std)) | |
self.assertTrue(torch.equal(normalized_tensor, expected)) | |
# Normalize will detect automatically if channel first or channel last is used. | |
tensor = torch.rand(3, 16, 32) | |
expected = (tensor - torch.tensor(mean)[:, None, None]) / torch.tensor(std)[:, None, None] | |
normalized_tensor = feature_extractor.normalize(tensor, mean, std) | |
self.assertTrue(torch.equal(normalized_tensor, expected)) | |
normalized_tensor = feature_extractor.normalize(tensor, torch.tensor(mean), torch.tensor(std)) | |
self.assertTrue(torch.equal(normalized_tensor, expected)) | |
def test_center_crop_image(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
image = get_random_image(16, 32) | |
# Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions. | |
crop_sizes = [8, (8, 64), 20, (32, 64)] | |
for size in crop_sizes: | |
cropped_image = feature_extractor.center_crop(image, size) | |
self.assertTrue(isinstance(cropped_image, PIL.Image.Image)) | |
# PIL Image.size is transposed compared to NumPy or PyTorch (width first instead of height first). | |
expected_size = (size, size) if isinstance(size, int) else (size[1], size[0]) | |
self.assertEqual(cropped_image.size, expected_size) | |
def test_center_crop_array(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
image = get_random_image(16, 32) | |
array = feature_extractor.to_numpy_array(image) | |
# Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions. | |
crop_sizes = [8, (8, 64), 20, (32, 64)] | |
for size in crop_sizes: | |
cropped_array = feature_extractor.center_crop(array, size) | |
self.assertTrue(isinstance(cropped_array, np.ndarray)) | |
expected_size = (size, size) if isinstance(size, int) else size | |
self.assertEqual(cropped_array.shape[-2:], expected_size) | |
# Check result is consistent with PIL.Image.crop | |
cropped_image = feature_extractor.center_crop(image, size) | |
self.assertTrue(np.array_equal(cropped_array, feature_extractor.to_numpy_array(cropped_image))) | |
def test_center_crop_tensor(self): | |
feature_extractor = ImageFeatureExtractionMixin() | |
image = get_random_image(16, 32) | |
array = feature_extractor.to_numpy_array(image) | |
tensor = torch.tensor(array) | |
# Test various crop sizes: bigger on all dimensions, on one of the dimensions only and on both dimensions. | |
crop_sizes = [8, (8, 64), 20, (32, 64)] | |
for size in crop_sizes: | |
cropped_tensor = feature_extractor.center_crop(tensor, size) | |
self.assertTrue(isinstance(cropped_tensor, torch.Tensor)) | |
expected_size = (size, size) if isinstance(size, int) else size | |
self.assertEqual(cropped_tensor.shape[-2:], expected_size) | |
# Check result is consistent with PIL.Image.crop | |
cropped_image = feature_extractor.center_crop(image, size) | |
self.assertTrue(torch.equal(cropped_tensor, torch.tensor(feature_extractor.to_numpy_array(cropped_image)))) | |
class LoadImageTester(unittest.TestCase): | |
def test_load_img_local(self): | |
img = load_image("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
img_arr = np.array(img) | |
self.assertEqual( | |
img_arr.shape, | |
(480, 640, 3), | |
) | |
def test_load_img_rgba(self): | |
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test") | |
img = load_image(dataset[0]["file"]) # img with mode RGBA | |
img_arr = np.array(img) | |
self.assertEqual( | |
img_arr.shape, | |
(512, 512, 3), | |
) | |
def test_load_img_la(self): | |
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test") | |
img = load_image(dataset[1]["file"]) # img with mode LA | |
img_arr = np.array(img) | |
self.assertEqual( | |
img_arr.shape, | |
(512, 768, 3), | |
) | |
def test_load_img_l(self): | |
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test") | |
img = load_image(dataset[2]["file"]) # img with mode L | |
img_arr = np.array(img) | |
self.assertEqual( | |
img_arr.shape, | |
(381, 225, 3), | |
) | |
def test_load_img_exif_transpose(self): | |
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test") | |
img_file = dataset[3]["file"] | |
img_without_exif_transpose = PIL.Image.open(img_file) | |
img_arr_without_exif_transpose = np.array(img_without_exif_transpose) | |
self.assertEqual( | |
img_arr_without_exif_transpose.shape, | |
(333, 500, 3), | |
) | |
img_with_exif_transpose = load_image(img_file) | |
img_arr_with_exif_transpose = np.array(img_with_exif_transpose) | |
self.assertEqual( | |
img_arr_with_exif_transpose.shape, | |
(500, 333, 3), | |
) | |
class UtilFunctionTester(unittest.TestCase): | |
def test_get_image_size(self): | |
# Test we can infer the size and channel dimension of an image. | |
image = np.random.randint(0, 256, (32, 64, 3)) | |
self.assertEqual(get_image_size(image), (32, 64)) | |
image = np.random.randint(0, 256, (3, 32, 64)) | |
self.assertEqual(get_image_size(image), (32, 64)) | |
# Test the channel dimension can be overriden | |
image = np.random.randint(0, 256, (3, 32, 64)) | |
self.assertEqual(get_image_size(image, channel_dim=ChannelDimension.LAST), (3, 32)) | |
def test_infer_channel_dimension(self): | |
# Test we fail with invalid input | |
with pytest.raises(ValueError): | |
infer_channel_dimension_format(np.random.randint(0, 256, (10, 10))) | |
with pytest.raises(ValueError): | |
infer_channel_dimension_format(np.random.randint(0, 256, (10, 10, 10, 10, 10))) | |
# Test we fail if neither first not last dimension is of size 3 or 1 | |
with pytest.raises(ValueError): | |
infer_channel_dimension_format(np.random.randint(0, 256, (10, 1, 50))) | |
# Test we correctly identify the channel dimension | |
image = np.random.randint(0, 256, (3, 4, 5)) | |
inferred_dim = infer_channel_dimension_format(image) | |
self.assertEqual(inferred_dim, ChannelDimension.FIRST) | |
image = np.random.randint(0, 256, (1, 4, 5)) | |
inferred_dim = infer_channel_dimension_format(image) | |
self.assertEqual(inferred_dim, ChannelDimension.FIRST) | |
image = np.random.randint(0, 256, (4, 5, 3)) | |
inferred_dim = infer_channel_dimension_format(image) | |
self.assertEqual(inferred_dim, ChannelDimension.LAST) | |
image = np.random.randint(0, 256, (4, 5, 1)) | |
inferred_dim = infer_channel_dimension_format(image) | |
self.assertEqual(inferred_dim, ChannelDimension.LAST) | |
# We can take a batched array of images and find the dimension | |
image = np.random.randint(0, 256, (1, 3, 4, 5)) | |
inferred_dim = infer_channel_dimension_format(image) | |
self.assertEqual(inferred_dim, ChannelDimension.FIRST) | |
def test_get_channel_dimension_axis(self): | |
# Test we correctly identify the channel dimension | |
image = np.random.randint(0, 256, (3, 4, 5)) | |
inferred_axis = get_channel_dimension_axis(image) | |
self.assertEqual(inferred_axis, 0) | |
image = np.random.randint(0, 256, (1, 4, 5)) | |
inferred_axis = get_channel_dimension_axis(image) | |
self.assertEqual(inferred_axis, 0) | |
image = np.random.randint(0, 256, (4, 5, 3)) | |
inferred_axis = get_channel_dimension_axis(image) | |
self.assertEqual(inferred_axis, 2) | |
image = np.random.randint(0, 256, (4, 5, 1)) | |
inferred_axis = get_channel_dimension_axis(image) | |
self.assertEqual(inferred_axis, 2) | |
# We can take a batched array of images and find the dimension | |
image = np.random.randint(0, 256, (1, 3, 4, 5)) | |
inferred_axis = get_channel_dimension_axis(image) | |
self.assertEqual(inferred_axis, 1) | |