Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2019 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import tempfile | |
import unittest | |
from transformers.modelcard import ModelCard | |
class ModelCardTester(unittest.TestCase): | |
def setUp(self): | |
self.inputs_dict = { | |
"model_details": { | |
"Organization": "testing", | |
"Model date": "today", | |
"Model version": "v2.1, Developed by Test Corp in 2019.", | |
"Architecture": "Convolutional Neural Network.", | |
}, | |
"metrics": "BLEU and ROUGE-1", | |
"evaluation_data": { | |
"Datasets": {"BLEU": "My-great-dataset-v1", "ROUGE-1": "My-short-dataset-v2.1"}, | |
"Preprocessing": "See details on https://arxiv.org/pdf/1810.03993.pdf", | |
}, | |
"training_data": { | |
"Dataset": "English Wikipedia dump dated 2018-12-01", | |
"Preprocessing": ( | |
"Using SentencePiece vocabulary of size 52k tokens. See details on" | |
" https://arxiv.org/pdf/1810.03993.pdf" | |
), | |
}, | |
"quantitative_analyses": {"BLEU": 55.1, "ROUGE-1": 76}, | |
} | |
def test_model_card_common_properties(self): | |
modelcard = ModelCard.from_dict(self.inputs_dict) | |
self.assertTrue(hasattr(modelcard, "model_details")) | |
self.assertTrue(hasattr(modelcard, "intended_use")) | |
self.assertTrue(hasattr(modelcard, "factors")) | |
self.assertTrue(hasattr(modelcard, "metrics")) | |
self.assertTrue(hasattr(modelcard, "evaluation_data")) | |
self.assertTrue(hasattr(modelcard, "training_data")) | |
self.assertTrue(hasattr(modelcard, "quantitative_analyses")) | |
self.assertTrue(hasattr(modelcard, "ethical_considerations")) | |
self.assertTrue(hasattr(modelcard, "caveats_and_recommendations")) | |
def test_model_card_to_json_string(self): | |
modelcard = ModelCard.from_dict(self.inputs_dict) | |
obj = json.loads(modelcard.to_json_string()) | |
for key, value in self.inputs_dict.items(): | |
self.assertEqual(obj[key], value) | |
def test_model_card_to_json_file(self): | |
model_card_first = ModelCard.from_dict(self.inputs_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filename = os.path.join(tmpdirname, "modelcard.json") | |
model_card_first.to_json_file(filename) | |
model_card_second = ModelCard.from_json_file(filename) | |
self.assertEqual(model_card_second.to_dict(), model_card_first.to_dict()) | |
def test_model_card_from_and_save_pretrained(self): | |
model_card_first = ModelCard.from_dict(self.inputs_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model_card_first.save_pretrained(tmpdirname) | |
model_card_second = ModelCard.from_pretrained(tmpdirname) | |
self.assertEqual(model_card_second.to_dict(), model_card_first.to_dict()) | |