Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import glob | |
import os | |
import re | |
import black | |
from doc_builder.style_doc import style_docstrings_in_code | |
from transformers.utils import direct_transformers_import | |
# All paths are set with the intent you should run this script from the root of the repo with the command | |
# python utils/check_copies.py | |
TRANSFORMERS_PATH = "src/transformers" | |
PATH_TO_DOCS = "docs/source/en" | |
REPO_PATH = "." | |
# Mapping for files that are full copies of others (keys are copies, values the file to keep them up to data with) | |
FULL_COPIES = { | |
"examples/tensorflow/question-answering/utils_qa.py": "examples/pytorch/question-answering/utils_qa.py", | |
"examples/flax/question-answering/utils_qa.py": "examples/pytorch/question-answering/utils_qa.py", | |
} | |
LOCALIZED_READMES = { | |
# If the introduction or the conclusion of the list change, the prompts may need to be updated. | |
"README.md": { | |
"start_prompt": "🤗 Transformers currently provides the following architectures", | |
"end_prompt": "1. Want to contribute a new model?", | |
"format_model_list": ( | |
"**[{title}]({model_link})** (from {paper_affiliations}) released with the paper {paper_title_link} by" | |
" {paper_authors}.{supplements}" | |
), | |
}, | |
"README_zh-hans.md": { | |
"start_prompt": "🤗 Transformers 目前支持如下的架构", | |
"end_prompt": "1. 想要贡献新的模型?", | |
"format_model_list": ( | |
"**[{title}]({model_link})** (来自 {paper_affiliations}) 伴随论文 {paper_title_link} 由 {paper_authors}" | |
" 发布。{supplements}" | |
), | |
}, | |
"README_zh-hant.md": { | |
"start_prompt": "🤗 Transformers 目前支援以下的架構", | |
"end_prompt": "1. 想要貢獻新的模型?", | |
"format_model_list": ( | |
"**[{title}]({model_link})** (from {paper_affiliations}) released with the paper {paper_title_link} by" | |
" {paper_authors}.{supplements}" | |
), | |
}, | |
"README_ko.md": { | |
"start_prompt": "🤗 Transformers는 다음 모델들을 제공합니다", | |
"end_prompt": "1. 새로운 모델을 올리고 싶나요?", | |
"format_model_list": ( | |
"**[{title}]({model_link})** ({paper_affiliations} 에서 제공)은 {paper_authors}.{supplements}의" | |
" {paper_title_link}논문과 함께 발표했습니다." | |
), | |
}, | |
"README_es.md": { | |
"start_prompt": "🤗 Transformers actualmente proporciona las siguientes arquitecturas", | |
"end_prompt": "1. ¿Quieres aportar un nuevo modelo?", | |
"format_model_list": ( | |
"**[{title}]({model_link})** (from {paper_affiliations}) released with the paper {paper_title_link} by" | |
" {paper_authors}.{supplements}" | |
), | |
}, | |
"README_ja.md": { | |
"start_prompt": "🤗Transformersは現在、以下のアーキテクチャを提供しています", | |
"end_prompt": "1. 新しいモデルを投稿したいですか?", | |
"format_model_list": ( | |
"**[{title}]({model_link})** ({paper_affiliations} から) {paper_authors}.{supplements} から公開された研究論文" | |
" {paper_title_link}" | |
), | |
}, | |
"README_hd.md": { | |
"start_prompt": "🤗 ट्रांसफॉर्मर वर्तमान में निम्नलिखित आर्किटेक्चर का समर्थन करते हैं", | |
"end_prompt": "1. एक नए मॉडल में योगदान देना चाहते हैं?", | |
"format_model_list": ( | |
"**[{title}]({model_link})** ({paper_affiliations} से) {paper_authors}.{supplements} द्वारा" | |
"अनुसंधान पत्र {paper_title_link} के साथ जारी किया गया" | |
), | |
}, | |
} | |
# This is to make sure the transformers module imported is the one in the repo. | |
transformers_module = direct_transformers_import(TRANSFORMERS_PATH) | |
def _should_continue(line, indent): | |
return line.startswith(indent) or len(line) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$", line) is not None | |
def find_code_in_transformers(object_name): | |
"""Find and return the code source code of `object_name`.""" | |
parts = object_name.split(".") | |
i = 0 | |
# First let's find the module where our object lives. | |
module = parts[i] | |
while i < len(parts) and not os.path.isfile(os.path.join(TRANSFORMERS_PATH, f"{module}.py")): | |
i += 1 | |
if i < len(parts): | |
module = os.path.join(module, parts[i]) | |
if i >= len(parts): | |
raise ValueError( | |
f"`object_name` should begin with the name of a module of transformers but got {object_name}." | |
) | |
with open(os.path.join(TRANSFORMERS_PATH, f"{module}.py"), "r", encoding="utf-8", newline="\n") as f: | |
lines = f.readlines() | |
# Now let's find the class / func in the code! | |
indent = "" | |
line_index = 0 | |
for name in parts[i + 1 :]: | |
while ( | |
line_index < len(lines) and re.search(rf"^{indent}(class|def)\s+{name}(\(|\:)", lines[line_index]) is None | |
): | |
line_index += 1 | |
indent += " " | |
line_index += 1 | |
if line_index >= len(lines): | |
raise ValueError(f" {object_name} does not match any function or class in {module}.") | |
# We found the beginning of the class / func, now let's find the end (when the indent diminishes). | |
start_index = line_index | |
while line_index < len(lines) and _should_continue(lines[line_index], indent): | |
line_index += 1 | |
# Clean up empty lines at the end (if any). | |
while len(lines[line_index - 1]) <= 1: | |
line_index -= 1 | |
code_lines = lines[start_index:line_index] | |
return "".join(code_lines) | |
_re_copy_warning = re.compile(r"^(\s*)#\s*Copied from\s+transformers\.(\S+\.\S+)\s*($|\S.*$)") | |
_re_replace_pattern = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") | |
_re_fill_pattern = re.compile(r"<FILL\s+[^>]*>") | |
def get_indent(code): | |
lines = code.split("\n") | |
idx = 0 | |
while idx < len(lines) and len(lines[idx]) == 0: | |
idx += 1 | |
if idx < len(lines): | |
return re.search(r"^(\s*)\S", lines[idx]).groups()[0] | |
return "" | |
def blackify(code): | |
""" | |
Applies the black part of our `make style` command to `code`. | |
""" | |
has_indent = len(get_indent(code)) > 0 | |
if has_indent: | |
code = f"class Bla:\n{code}" | |
mode = black.Mode(target_versions={black.TargetVersion.PY37}, line_length=119) | |
result = black.format_str(code, mode=mode) | |
result, _ = style_docstrings_in_code(result) | |
return result[len("class Bla:\n") :] if has_indent else result | |
def is_copy_consistent(filename, overwrite=False): | |
""" | |
Check if the code commented as a copy in `filename` matches the original. | |
Return the differences or overwrites the content depending on `overwrite`. | |
""" | |
with open(filename, "r", encoding="utf-8", newline="\n") as f: | |
lines = f.readlines() | |
diffs = [] | |
line_index = 0 | |
# Not a for loop cause `lines` is going to change (if `overwrite=True`). | |
while line_index < len(lines): | |
search = _re_copy_warning.search(lines[line_index]) | |
if search is None: | |
line_index += 1 | |
continue | |
# There is some copied code here, let's retrieve the original. | |
indent, object_name, replace_pattern = search.groups() | |
theoretical_code = find_code_in_transformers(object_name) | |
theoretical_indent = get_indent(theoretical_code) | |
start_index = line_index + 1 if indent == theoretical_indent else line_index + 2 | |
indent = theoretical_indent | |
line_index = start_index | |
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. | |
should_continue = True | |
while line_index < len(lines) and should_continue: | |
line_index += 1 | |
if line_index >= len(lines): | |
break | |
line = lines[line_index] | |
should_continue = _should_continue(line, indent) and re.search(f"^{indent}# End copy", line) is None | |
# Clean up empty lines at the end (if any). | |
while len(lines[line_index - 1]) <= 1: | |
line_index -= 1 | |
observed_code_lines = lines[start_index:line_index] | |
observed_code = "".join(observed_code_lines) | |
# Before comparing, use the `replace_pattern` on the original code. | |
if len(replace_pattern) > 0: | |
patterns = replace_pattern.replace("with", "").split(",") | |
patterns = [_re_replace_pattern.search(p) for p in patterns] | |
for pattern in patterns: | |
if pattern is None: | |
continue | |
obj1, obj2, option = pattern.groups() | |
theoretical_code = re.sub(obj1, obj2, theoretical_code) | |
if option.strip() == "all-casing": | |
theoretical_code = re.sub(obj1.lower(), obj2.lower(), theoretical_code) | |
theoretical_code = re.sub(obj1.upper(), obj2.upper(), theoretical_code) | |
# Blackify after replacement. To be able to do that, we need the header (class or function definition) | |
# from the previous line | |
theoretical_code = blackify(lines[start_index - 1] + theoretical_code) | |
theoretical_code = theoretical_code[len(lines[start_index - 1]) :] | |
# Test for a diff and act accordingly. | |
if observed_code != theoretical_code: | |
diff_index = start_index + 1 | |
for observed_line, theoretical_line in zip(observed_code.split("\n"), theoretical_code.split("\n")): | |
if observed_line != theoretical_line: | |
break | |
diff_index += 1 | |
diffs.append([object_name, diff_index]) | |
if overwrite: | |
lines = lines[:start_index] + [theoretical_code] + lines[line_index:] | |
line_index = start_index + 1 | |
if overwrite and len(diffs) > 0: | |
# Warn the user a file has been modified. | |
print(f"Detected changes, rewriting {filename}.") | |
with open(filename, "w", encoding="utf-8", newline="\n") as f: | |
f.writelines(lines) | |
return diffs | |
def check_copies(overwrite: bool = False): | |
all_files = glob.glob(os.path.join(TRANSFORMERS_PATH, "**/*.py"), recursive=True) | |
diffs = [] | |
for filename in all_files: | |
new_diffs = is_copy_consistent(filename, overwrite) | |
diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] | |
if not overwrite and len(diffs) > 0: | |
diff = "\n".join(diffs) | |
raise Exception( | |
"Found the following copy inconsistencies:\n" | |
+ diff | |
+ "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." | |
) | |
check_model_list_copy(overwrite=overwrite) | |
def check_full_copies(overwrite: bool = False): | |
diffs = [] | |
for target, source in FULL_COPIES.items(): | |
with open(source, "r", encoding="utf-8") as f: | |
source_code = f.read() | |
with open(target, "r", encoding="utf-8") as f: | |
target_code = f.read() | |
if source_code != target_code: | |
if overwrite: | |
with open(target, "w", encoding="utf-8") as f: | |
print(f"Replacing the content of {target} by the one of {source}.") | |
f.write(source_code) | |
else: | |
diffs.append(f"- {target}: copy does not match {source}.") | |
if not overwrite and len(diffs) > 0: | |
diff = "\n".join(diffs) | |
raise Exception( | |
"Found the following copy inconsistencies:\n" | |
+ diff | |
+ "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." | |
) | |
def get_model_list(filename, start_prompt, end_prompt): | |
"""Extracts the model list from the README.""" | |
with open(os.path.join(REPO_PATH, filename), "r", encoding="utf-8", newline="\n") as f: | |
lines = f.readlines() | |
# Find the start of the list. | |
start_index = 0 | |
while not lines[start_index].startswith(start_prompt): | |
start_index += 1 | |
start_index += 1 | |
result = [] | |
current_line = "" | |
end_index = start_index | |
while not lines[end_index].startswith(end_prompt): | |
if lines[end_index].startswith("1."): | |
if len(current_line) > 1: | |
result.append(current_line) | |
current_line = lines[end_index] | |
elif len(lines[end_index]) > 1: | |
current_line = f"{current_line[:-1]} {lines[end_index].lstrip()}" | |
end_index += 1 | |
if len(current_line) > 1: | |
result.append(current_line) | |
return "".join(result) | |
def convert_to_localized_md(model_list, localized_model_list, format_str): | |
"""Convert `model_list` to each localized README.""" | |
def _rep(match): | |
title, model_link, paper_affiliations, paper_title_link, paper_authors, supplements = match.groups() | |
return format_str.format( | |
title=title, | |
model_link=model_link, | |
paper_affiliations=paper_affiliations, | |
paper_title_link=paper_title_link, | |
paper_authors=paper_authors, | |
supplements=" " + supplements.strip() if len(supplements) != 0 else "", | |
) | |
# This regex captures metadata from an English model description, including model title, model link, | |
# affiliations of the paper, title of the paper, authors of the paper, and supplemental data (see DistilBERT for example). | |
_re_capture_meta = re.compile( | |
r"\*\*\[([^\]]*)\]\(([^\)]*)\)\*\* \(from ([^)]*)\)[^\[]*([^\)]*\)).*?by (.*?[A-Za-z\*]{2,}?)\. (.*)$" | |
) | |
# This regex is used to synchronize link. | |
_re_capture_title_link = re.compile(r"\*\*\[([^\]]*)\]\(([^\)]*)\)\*\*") | |
if len(localized_model_list) == 0: | |
localized_model_index = {} | |
else: | |
try: | |
localized_model_index = { | |
re.search(r"\*\*\[([^\]]*)", line).groups()[0]: line | |
for line in localized_model_list.strip().split("\n") | |
} | |
except AttributeError: | |
raise AttributeError("A model name in localized READMEs cannot be recognized.") | |
model_keys = [re.search(r"\*\*\[([^\]]*)", line).groups()[0] for line in model_list.strip().split("\n")] | |
# We exclude keys in localized README not in the main one. | |
readmes_match = not any([k not in model_keys for k in localized_model_index]) | |
localized_model_index = {k: v for k, v in localized_model_index.items() if k in model_keys} | |
for model in model_list.strip().split("\n"): | |
title, model_link = _re_capture_title_link.search(model).groups() | |
if title not in localized_model_index: | |
readmes_match = False | |
# Add an anchor white space behind a model description string for regex. | |
# If metadata cannot be captured, the English version will be directly copied. | |
localized_model_index[title] = _re_capture_meta.sub(_rep, model + " ") | |
elif _re_fill_pattern.search(localized_model_index[title]) is not None: | |
update = _re_capture_meta.sub(_rep, model + " ") | |
if update != localized_model_index[title]: | |
readmes_match = False | |
localized_model_index[title] = update | |
else: | |
# Synchronize link | |
localized_model_index[title] = _re_capture_title_link.sub( | |
f"**[{title}]({model_link})**", localized_model_index[title], count=1 | |
) | |
sorted_index = sorted(localized_model_index.items(), key=lambda x: x[0].lower()) | |
return readmes_match, "\n".join((x[1] for x in sorted_index)) + "\n" | |
def convert_readme_to_index(model_list): | |
model_list = model_list.replace("https://huggingface.co/docs/transformers/main/", "") | |
return model_list.replace("https://huggingface.co/docs/transformers/", "") | |
def _find_text_in_file(filename, start_prompt, end_prompt): | |
""" | |
Find the text in `filename` between a line beginning with `start_prompt` and before `end_prompt`, removing empty | |
lines. | |
""" | |
with open(filename, "r", encoding="utf-8", newline="\n") as f: | |
lines = f.readlines() | |
# Find the start prompt. | |
start_index = 0 | |
while not lines[start_index].startswith(start_prompt): | |
start_index += 1 | |
start_index += 1 | |
end_index = start_index | |
while not lines[end_index].startswith(end_prompt): | |
end_index += 1 | |
end_index -= 1 | |
while len(lines[start_index]) <= 1: | |
start_index += 1 | |
while len(lines[end_index]) <= 1: | |
end_index -= 1 | |
end_index += 1 | |
return "".join(lines[start_index:end_index]), start_index, end_index, lines | |
def check_model_list_copy(overwrite=False, max_per_line=119): | |
"""Check the model lists in the README and index.rst are consistent and maybe `overwrite`.""" | |
# Fix potential doc links in the README | |
with open(os.path.join(REPO_PATH, "README.md"), "r", encoding="utf-8", newline="\n") as f: | |
readme = f.read() | |
new_readme = readme.replace("https://huggingface.co/transformers", "https://huggingface.co/docs/transformers") | |
new_readme = new_readme.replace( | |
"https://huggingface.co/docs/main/transformers", "https://huggingface.co/docs/transformers/main" | |
) | |
if new_readme != readme: | |
if overwrite: | |
with open(os.path.join(REPO_PATH, "README.md"), "w", encoding="utf-8", newline="\n") as f: | |
f.write(new_readme) | |
else: | |
raise ValueError( | |
"The main README contains wrong links to the documentation of Transformers. Run `make fix-copies` to " | |
"automatically fix them." | |
) | |
# If the introduction or the conclusion of the list change, the prompts may need to be updated. | |
index_list, start_index, end_index, lines = _find_text_in_file( | |
filename=os.path.join(PATH_TO_DOCS, "index.mdx"), | |
start_prompt="<!--This list is updated automatically from the README", | |
end_prompt="### Supported frameworks", | |
) | |
md_list = get_model_list( | |
filename="README.md", | |
start_prompt=LOCALIZED_READMES["README.md"]["start_prompt"], | |
end_prompt=LOCALIZED_READMES["README.md"]["end_prompt"], | |
) | |
converted_md_lists = [] | |
for filename, value in LOCALIZED_READMES.items(): | |
_start_prompt = value["start_prompt"] | |
_end_prompt = value["end_prompt"] | |
_format_model_list = value["format_model_list"] | |
localized_md_list = get_model_list(filename, _start_prompt, _end_prompt) | |
readmes_match, converted_md_list = convert_to_localized_md(md_list, localized_md_list, _format_model_list) | |
converted_md_lists.append((filename, readmes_match, converted_md_list, _start_prompt, _end_prompt)) | |
converted_md_list = convert_readme_to_index(md_list) | |
if converted_md_list != index_list: | |
if overwrite: | |
with open(os.path.join(PATH_TO_DOCS, "index.mdx"), "w", encoding="utf-8", newline="\n") as f: | |
f.writelines(lines[:start_index] + [converted_md_list] + lines[end_index:]) | |
else: | |
raise ValueError( | |
"The model list in the README changed and the list in `index.mdx` has not been updated. Run " | |
"`make fix-copies` to fix this." | |
) | |
for converted_md_list in converted_md_lists: | |
filename, readmes_match, converted_md, _start_prompt, _end_prompt = converted_md_list | |
if filename == "README.md": | |
continue | |
if overwrite: | |
_, start_index, end_index, lines = _find_text_in_file( | |
filename=os.path.join(REPO_PATH, filename), start_prompt=_start_prompt, end_prompt=_end_prompt | |
) | |
with open(os.path.join(REPO_PATH, filename), "w", encoding="utf-8", newline="\n") as f: | |
f.writelines(lines[:start_index] + [converted_md] + lines[end_index:]) | |
elif not readmes_match: | |
raise ValueError( | |
f"The model list in the README changed and the list in `{filename}` has not been updated. Run " | |
"`make fix-copies` to fix this." | |
) | |
SPECIAL_MODEL_NAMES = { | |
"Bert Generation": "BERT For Sequence Generation", | |
"BigBird": "BigBird-RoBERTa", | |
"Data2VecAudio": "Data2Vec", | |
"Data2VecText": "Data2Vec", | |
"Data2VecVision": "Data2Vec", | |
"DonutSwin": "Swin Transformer", | |
"Marian": "MarianMT", | |
"MaskFormerSwin": "Swin Transformer", | |
"OpenAI GPT-2": "GPT-2", | |
"OpenAI GPT": "GPT", | |
"Perceiver": "Perceiver IO", | |
"ViT": "Vision Transformer (ViT)", | |
} | |
# Update this list with the models that shouldn't be in the README. This only concerns modular models or those who do | |
# not have an associated paper. | |
MODELS_NOT_IN_README = [ | |
"BertJapanese", | |
"Encoder decoder", | |
"FairSeq Machine-Translation", | |
"HerBERT", | |
"RetriBERT", | |
"Speech Encoder decoder", | |
"Speech2Text", | |
"Speech2Text2", | |
"Vision Encoder decoder", | |
"VisionTextDualEncoder", | |
] | |
README_TEMPLATE = ( | |
"1. **[{model_name}](https://huggingface.co/docs/main/transformers/model_doc/{model_type})** (from " | |
"<FILL INSTITUTION>) released with the paper [<FILL PAPER TITLE>](<FILL ARKIV LINK>) by <FILL AUTHORS>." | |
) | |
def check_readme(overwrite=False): | |
info = LOCALIZED_READMES["README.md"] | |
models, start_index, end_index, lines = _find_text_in_file( | |
os.path.join(REPO_PATH, "README.md"), | |
info["start_prompt"], | |
info["end_prompt"], | |
) | |
models_in_readme = [re.search(r"\*\*\[([^\]]*)", line).groups()[0] for line in models.strip().split("\n")] | |
model_names_mapping = transformers_module.models.auto.configuration_auto.MODEL_NAMES_MAPPING | |
absents = [ | |
(key, name) | |
for key, name in model_names_mapping.items() | |
if SPECIAL_MODEL_NAMES.get(name, name) not in models_in_readme | |
] | |
# Remove exceptions | |
absents = [(key, name) for key, name in absents if name not in MODELS_NOT_IN_README] | |
if len(absents) > 0 and not overwrite: | |
print(absents) | |
raise ValueError( | |
"The main README doesn't contain all models, run `make fix-copies` to fill it with the missing model(s)" | |
" then complete the generated entries.\nIf the model is not supposed to be in the main README, add it to" | |
" the list `MODELS_NOT_IN_README` in utils/check_copies.py.\nIf it has a different name in the repo than" | |
" in the README, map the correspondence in `SPECIAL_MODEL_NAMES` in utils/check_copies.py." | |
) | |
new_models = [README_TEMPLATE.format(model_name=name, model_type=key) for key, name in absents] | |
all_models = models.strip().split("\n") + new_models | |
all_models = sorted(all_models, key=lambda x: re.search(r"\*\*\[([^\]]*)", x).groups()[0].lower()) | |
all_models = "\n".join(all_models) + "\n" | |
if all_models != models: | |
if overwrite: | |
print("Fixing the main README.") | |
with open(os.path.join(REPO_PATH, "README.md"), "w", encoding="utf-8", newline="\n") as f: | |
f.writelines(lines[:start_index] + [all_models] + lines[end_index:]) | |
else: | |
raise ValueError("The main README model list is not properly sorted. Run `make fix-copies` to fix this.") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") | |
args = parser.parse_args() | |
check_readme(args.fix_and_overwrite) | |
check_copies(args.fix_and_overwrite) | |
check_full_copies(args.fix_and_overwrite) | |