chendl's picture
add requirements
a1d409e
raw
history blame
3.57 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pb2 import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
REPO_PATH = "."
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
INTERNAL_OPS = [
"Assert",
"AssignVariableOp",
"EmptyTensorList",
"MergeV2Checkpoints",
"ReadVariableOp",
"ResourceGather",
"RestoreV2",
"SaveV2",
"ShardedFilename",
"StatefulPartitionedCall",
"StaticRegexFullMatch",
"VarHandleOp",
]
def onnx_compliancy(saved_model_path, strict, opset):
saved_model = SavedModel()
onnx_ops = []
with open(os.path.join(REPO_PATH, "utils", "tf_ops", "onnx.json")) as f:
onnx_opsets = json.load(f)["opsets"]
for i in range(1, opset + 1):
onnx_ops.extend(onnx_opsets[str(i)])
with open(saved_model_path, "rb") as f:
saved_model.ParseFromString(f.read())
model_op_names = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node)
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def)
# Convert to list, sorted if you want
model_op_names = sorted(model_op_names)
incompatible_ops = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(op)
if strict and len(incompatible_ops) > 0:
raise Exception(f"Found the following incompatible ops for the opset {opset}:\n" + incompatible_ops)
elif len(incompatible_ops) > 0:
print(f"Found the following incompatible ops for the opset {opset}:")
print(*incompatible_ops, sep="\n")
else:
print(f"The saved model {saved_model_path} can properly be converted with ONNX.")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).")
parser.add_argument(
"--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested."
)
parser.add_argument(
"--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model."
)
parser.add_argument(
"--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)"
)
args = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)