compositional_test / multimodal /tools /prepare_mini_blip2_dataset.py
chendl's picture
Add application file
0b7b08a
raw
history blame
6.69 kB
import webdataset as wds
import glob
import os
from tqdm import tqdm
import orjson as json
import itertools
from PIL import Image
import numpy as np
from typing import List
class Generator():
def __init__(self, dataset_name):
self.dataset_name = dataset_name
self.is_end = False
class CC3MGenerator(Generator):
def __init__(self, root: str, dataset_name="cc3m"):
super().__init__(dataset_name=dataset_name)
self.tars = glob.glob(os.path.join(root, "cc3m_*", "*.tar"))
def __len__(self):
return 3000000
def __iter__(self):
for tar in self.tars:
dataset = wds.WebDataset(tar).decode("pilrgb").to_tuple("jpg;png;jpeg", "txt")
for data in dataset:
yield [self.dataset_name] + list(data)
self.is_end = True
class CC12MGenerator(CC3MGenerator):
def __init__(self, root: str):
super().__init__(root, "cc12m")
self.tars = glob.glob(os.path.join(root, "*.tar"))
def __len__(self):
return 12000000
class COCOGenerator(Generator):
def __init__(self, anno: str, image_dir):
super().__init__(dataset_name="coco")
data = json.loads(open(anno).read())
self.annotations = data["annotations"]
self.image_id_to_filename = {}
for image in data["images"]:
file_name = image["file_name"]
image_id = image["id"]
self.image_id_to_filename[image_id] = os.path.join(image_dir, file_name)
def __len__(self):
return len(self.annotations)
def __iter__(self):
for anno in self.annotations:
image_id = anno["image_id"]
caption = anno["caption"]
try:
image = Image.open(self.image_id_to_filename[image_id])
except:
continue
yield [self.dataset_name, image, caption]
self.is_end = True
class KarpathyCOCOGenerator(Generator):
def __init__(self, anno="/gpfs/u/home/LMCG/LMCGljnn/scratch/code/multimodal/tools/coco_karpathy_train.json", image_dir="/gpfs/u/home/LMCG/LMCGljnn/scratch/.cache/lavis/coco/images"):
super().__init__(dataset_name="coco")
data = json.loads(open(anno).read())
self.annotations = data
self.image_id_to_filename = {}
for d in data:
self.image_id_to_filename[d["image_id"]] = os.path.join(image_dir, d["image"])
def __len__(self):
return len(self.annotations)
def __iter__(self):
for anno in self.annotations:
image_id = anno["image_id"]
caption = anno["caption"]
try:
image = Image.open(self.image_id_to_filename[image_id])
except:
print(self.image_id_to_filename[image_id])
yield [self.dataset_name, image, caption]
self.is_end = True
class VisualGenomeGenerator(Generator):
def __init__(self, root: str):
super().__init__(dataset_name="vg")
data = json.loads(open(os.path.join(root, "region_descriptions.json")).read())
image_data = json.loads(open(os.path.join(root, "image_data.json")).read())
self.image_id_to_filename = {}
self.image_id_to_wh = {}
for image in image_data:
image_id = image["image_id"]
subfolder, filename = image['url'].split("/")[-2:]
self.image_id_to_filename[image_id] = os.path.join(root, subfolder, filename)
self.image_id_to_wh[image_id] = (image["width"], image["height"])
self.regions = []
total = 0
total_image = 0
used_image = 0
for xx in data:
total_image += 1
flag = False
for region in xx['regions']:
total += 1
region_w = int(region["width"])
region_h = int(region["height"])
image_w = self.image_id_to_wh[region["image_id"]][0]
image_h = self.image_id_to_wh[region["image_id"]][1]
if region_w * region_h < (image_w * image_h) * 0.2:
continue
self.regions.append(region)
flag = True
if flag:
used_image += 1
print("valid region", len(self.regions), total, len(self.regions) / total)
print("valid image", used_image, total_image, used_image / total_image)
def __len__(self):
return len(self.regions)
def __iter__(self):
for region in self.regions:
image_id = region["image_id"]
phrase = region["phrase"]
try:
image = Image.open(self.image_id_to_filename[image_id])
except:
continue
yield [self.dataset_name, image, phrase]
self.is_end = True
class ShuffleGenerator():
def __init__(self, generators: List[Generator], p: List[int]):
self.generators = generators
self.p = list(np.array(p) / sum(p))
self.ids = list(range(len(self.generators)))
print("rebalance", self.ids, self.p)
def __len__(self):
return sum([len(g) for g in self.generators])
def __iter__(self):
while True:
if len(self.ids) == 0:
break
id = np.random.choice(self.ids, p=self.p)
gen = self.generators[id]
if gen.is_end:
print(gen.dataset_name, "is all done")
del self.ids[id]
del self.p[id]
self.p = list(np.array(self.p) / sum(p))
print("rebalance", self.ids, self.p)
else:
return iter(gen)
if __name__ == "__main__":
OUT_DIR = "/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/junyan/raw/vg_withBox_wds"
os.makedirs(OUT_DIR, exist_ok=True)
# cc3m_generator = CC3MGenerator("/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/junyan/raw/cc3m")
# cc12m_generator = CC12MGenerator("/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/junyan/raw/cc12m/tars")
# coco_generator = KarpathyCOCOGenerator()
visual_genome_generator = VisualGenomeGenerator("/gpfs/u/home/LMCG/LMCGljnn/scratch/datasets/raw/vg")
# generators = [cc3m_generator, cc12m_generator, coco_generator, visual_genome_generator]
# p = [len(generator) for generator in generators]
# dataset = ShuffleGenerator(generators, p)
with wds.ShardWriter(os.path.join(OUT_DIR, "%05d.tar"), maxcount=8500) as sink:
sink.verbose = False
for i, data in enumerate(tqdm(visual_genome_generator)):
dataset_name, image, caption = data
sink.write({"__key__": f"{dataset_name}_{i}_containBox", "jpg": image, "txt": caption})