Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding:utf-8 -*- | |
# Code are based on | |
# https://github.com/facebookresearch/detectron2/blob/master/detectron2/engine/launch.py | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# Copyright (c) Megvii, Inc. and its affiliates. | |
import sys | |
from datetime import timedelta | |
from loguru import logger | |
import torch | |
import torch.distributed as dist | |
import torch.multiprocessing as mp | |
import yolox.utils.dist as comm | |
__all__ = ["launch"] | |
DEFAULT_TIMEOUT = timedelta(minutes=30) | |
def _find_free_port(): | |
""" | |
Find an available port of current machine / node. | |
""" | |
import socket | |
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) | |
# Binding to port 0 will cause the OS to find an available port for us | |
sock.bind(("", 0)) | |
port = sock.getsockname()[1] | |
sock.close() | |
# NOTE: there is still a chance the port could be taken by other processes. | |
return port | |
def launch( | |
main_func, | |
num_gpus_per_machine, | |
num_machines=1, | |
machine_rank=0, | |
backend="nccl", | |
dist_url=None, | |
args=(), | |
timeout=DEFAULT_TIMEOUT, | |
): | |
""" | |
Args: | |
main_func: a function that will be called by `main_func(*args)` | |
num_machines (int): the total number of machines | |
machine_rank (int): the rank of this machine (one per machine) | |
dist_url (str): url to connect to for distributed training, including protocol | |
e.g. "tcp://127.0.0.1:8686". | |
Can be set to auto to automatically select a free port on localhost | |
args (tuple): arguments passed to main_func | |
""" | |
world_size = num_machines * num_gpus_per_machine | |
if world_size > 1: | |
# https://github.com/pytorch/pytorch/pull/14391 | |
# TODO prctl in spawned processes | |
if dist_url == "auto": | |
assert ( | |
num_machines == 1 | |
), "dist_url=auto cannot work with distributed training." | |
port = _find_free_port() | |
dist_url = f"tcp://127.0.0.1:{port}" | |
start_method = "spawn" | |
cache = vars(args[1]).get("cache", False) | |
# To use numpy memmap for caching image into RAM, we have to use fork method | |
if cache: | |
assert sys.platform != "win32", ( | |
"As Windows platform doesn't support fork method, " | |
"do not add --cache in your training command." | |
) | |
start_method = "fork" | |
mp.start_processes( | |
_distributed_worker, | |
nprocs=num_gpus_per_machine, | |
args=( | |
main_func, | |
world_size, | |
num_gpus_per_machine, | |
machine_rank, | |
backend, | |
dist_url, | |
args, | |
), | |
daemon=False, | |
start_method=start_method, | |
) | |
else: | |
main_func(*args) | |
def _distributed_worker( | |
local_rank, | |
main_func, | |
world_size, | |
num_gpus_per_machine, | |
machine_rank, | |
backend, | |
dist_url, | |
args, | |
timeout=DEFAULT_TIMEOUT, | |
): | |
assert ( | |
torch.cuda.is_available() | |
), "cuda is not available. Please check your installation." | |
global_rank = machine_rank * num_gpus_per_machine + local_rank | |
logger.info("Rank {} initialization finished.".format(global_rank)) | |
try: | |
dist.init_process_group( | |
backend=backend, | |
init_method=dist_url, | |
world_size=world_size, | |
rank=global_rank, | |
timeout=timeout, | |
) | |
except Exception: | |
logger.error("Process group URL: {}".format(dist_url)) | |
raise | |
# Setup the local process group (which contains ranks within the same machine) | |
assert comm._LOCAL_PROCESS_GROUP is None | |
num_machines = world_size // num_gpus_per_machine | |
for i in range(num_machines): | |
ranks_on_i = list( | |
range(i * num_gpus_per_machine, (i + 1) * num_gpus_per_machine) | |
) | |
pg = dist.new_group(ranks_on_i) | |
if i == machine_rank: | |
comm._LOCAL_PROCESS_GROUP = pg | |
# synchronize is needed here to prevent a possible timeout after calling init_process_group | |
# See: https://github.com/facebookresearch/maskrcnn-benchmark/issues/172 | |
comm.synchronize() | |
assert num_gpus_per_machine <= torch.cuda.device_count() | |
torch.cuda.set_device(local_rank) | |
main_func(*args) | |