chendl's picture
Add application file
0b7b08a
raw
history blame
13.7 kB
#!/usr/bin/env python3
# Copyright (c) Megvii, Inc. and its affiliates.
import datetime
import os
import time
from loguru import logger
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from yolox.data import DataPrefetcher
from yolox.exp import Exp
from yolox.utils import (
MeterBuffer,
ModelEMA,
WandbLogger,
adjust_status,
all_reduce_norm,
get_local_rank,
get_model_info,
get_rank,
get_world_size,
gpu_mem_usage,
is_parallel,
load_ckpt,
mem_usage,
occupy_mem,
save_checkpoint,
setup_logger,
synchronize
)
class Trainer:
def __init__(self, exp: Exp, args):
# init function only defines some basic attr, other attrs like model, optimizer are built in
# before_train methods.
self.exp = exp
self.args = args
# training related attr
self.max_epoch = exp.max_epoch
self.amp_training = args.fp16
self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
self.is_distributed = get_world_size() > 1
self.rank = get_rank()
self.local_rank = get_local_rank()
self.device = "cuda:{}".format(self.local_rank)
self.use_model_ema = exp.ema
self.save_history_ckpt = exp.save_history_ckpt
# data/dataloader related attr
self.data_type = torch.float16 if args.fp16 else torch.float32
self.input_size = exp.input_size
self.best_ap = 0
# metric record
self.meter = MeterBuffer(window_size=exp.print_interval)
self.file_name = os.path.join(exp.output_dir, args.experiment_name)
if self.rank == 0:
os.makedirs(self.file_name, exist_ok=True)
setup_logger(
self.file_name,
distributed_rank=self.rank,
filename="train_log.txt",
mode="a",
)
def train(self):
self.before_train()
try:
self.train_in_epoch()
except Exception:
raise
finally:
self.after_train()
def train_in_epoch(self):
for self.epoch in range(self.start_epoch, self.max_epoch):
self.before_epoch()
self.train_in_iter()
self.after_epoch()
def train_in_iter(self):
for self.iter in range(self.max_iter):
self.before_iter()
self.train_one_iter()
self.after_iter()
def train_one_iter(self):
iter_start_time = time.time()
inps, targets = self.prefetcher.next()
inps = inps.to(self.data_type)
targets = targets.to(self.data_type)
targets.requires_grad = False
inps, targets = self.exp.preprocess(inps, targets, self.input_size)
data_end_time = time.time()
with torch.cuda.amp.autocast(enabled=self.amp_training):
outputs = self.model(inps, targets)
loss = outputs["total_loss"]
self.optimizer.zero_grad()
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
if self.use_model_ema:
self.ema_model.update(self.model)
lr = self.lr_scheduler.update_lr(self.progress_in_iter + 1)
for param_group in self.optimizer.param_groups:
param_group["lr"] = lr
iter_end_time = time.time()
self.meter.update(
iter_time=iter_end_time - iter_start_time,
data_time=data_end_time - iter_start_time,
lr=lr,
**outputs,
)
def before_train(self):
logger.info("args: {}".format(self.args))
logger.info("exp value:\n{}".format(self.exp))
# model related init
torch.cuda.set_device(self.local_rank)
model = self.exp.get_model()
logger.info(
"Model Summary: {}".format(get_model_info(model, self.exp.test_size))
)
model.to(self.device)
# solver related init
self.optimizer = self.exp.get_optimizer(self.args.batch_size)
# value of epoch will be set in `resume_train`
model = self.resume_train(model)
# data related init
self.no_aug = self.start_epoch >= self.max_epoch - self.exp.no_aug_epochs
self.train_loader = self.exp.get_data_loader(
batch_size=self.args.batch_size,
is_distributed=self.is_distributed,
no_aug=self.no_aug,
cache_img=self.args.cache,
)
logger.info("init prefetcher, this might take one minute or less...")
self.prefetcher = DataPrefetcher(self.train_loader)
# max_iter means iters per epoch
self.max_iter = len(self.train_loader)
self.lr_scheduler = self.exp.get_lr_scheduler(
self.exp.basic_lr_per_img * self.args.batch_size, self.max_iter
)
if self.args.occupy:
occupy_mem(self.local_rank)
if self.is_distributed:
model = DDP(model, device_ids=[self.local_rank], broadcast_buffers=False)
if self.use_model_ema:
self.ema_model = ModelEMA(model, 0.9998)
self.ema_model.updates = self.max_iter * self.start_epoch
self.model = model
self.evaluator = self.exp.get_evaluator(
batch_size=self.args.batch_size, is_distributed=self.is_distributed
)
# Tensorboard and Wandb loggers
if self.rank == 0:
if self.args.logger == "tensorboard":
self.tblogger = SummaryWriter(os.path.join(self.file_name, "tensorboard"))
elif self.args.logger == "wandb":
self.wandb_logger = WandbLogger.initialize_wandb_logger(
self.args,
self.exp,
self.evaluator.dataloader.dataset
)
else:
raise ValueError("logger must be either 'tensorboard' or 'wandb'")
logger.info("Training start...")
logger.info("\n{}".format(model))
def after_train(self):
logger.info(
"Training of experiment is done and the best AP is {:.2f}".format(self.best_ap * 100)
)
if self.rank == 0:
if self.args.logger == "wandb":
self.wandb_logger.finish()
def before_epoch(self):
logger.info("---> start train epoch{}".format(self.epoch + 1))
if self.epoch + 1 == self.max_epoch - self.exp.no_aug_epochs or self.no_aug:
logger.info("--->No mosaic aug now!")
self.train_loader.close_mosaic()
logger.info("--->Add additional L1 loss now!")
if self.is_distributed:
self.model.module.head.use_l1 = True
else:
self.model.head.use_l1 = True
self.exp.eval_interval = 1
if not self.no_aug:
self.save_ckpt(ckpt_name="last_mosaic_epoch")
def after_epoch(self):
self.save_ckpt(ckpt_name="latest")
if (self.epoch + 1) % self.exp.eval_interval == 0:
all_reduce_norm(self.model)
self.evaluate_and_save_model()
def before_iter(self):
pass
def after_iter(self):
"""
`after_iter` contains two parts of logic:
* log information
* reset setting of resize
"""
# log needed information
if (self.iter + 1) % self.exp.print_interval == 0:
# TODO check ETA logic
left_iters = self.max_iter * self.max_epoch - (self.progress_in_iter + 1)
eta_seconds = self.meter["iter_time"].global_avg * left_iters
eta_str = "ETA: {}".format(datetime.timedelta(seconds=int(eta_seconds)))
progress_str = "epoch: {}/{}, iter: {}/{}".format(
self.epoch + 1, self.max_epoch, self.iter + 1, self.max_iter
)
loss_meter = self.meter.get_filtered_meter("loss")
loss_str = ", ".join(
["{}: {:.1f}".format(k, v.latest) for k, v in loss_meter.items()]
)
time_meter = self.meter.get_filtered_meter("time")
time_str = ", ".join(
["{}: {:.3f}s".format(k, v.avg) for k, v in time_meter.items()]
)
mem_str = "gpu mem: {:.0f}Mb, mem: {:.1f}Gb".format(gpu_mem_usage(), mem_usage())
logger.info(
"{}, {}, {}, {}, lr: {:.3e}".format(
progress_str,
mem_str,
time_str,
loss_str,
self.meter["lr"].latest,
)
+ (", size: {:d}, {}".format(self.input_size[0], eta_str))
)
if self.rank == 0:
if self.args.logger == "tensorboard":
self.tblogger.add_scalar(
"train/lr", self.meter["lr"].latest, self.progress_in_iter)
for k, v in loss_meter.items():
self.tblogger.add_scalar(
f"train/{k}", v.latest, self.progress_in_iter)
if self.args.logger == "wandb":
metrics = {"train/" + k: v.latest for k, v in loss_meter.items()}
metrics.update({
"train/lr": self.meter["lr"].latest
})
self.wandb_logger.log_metrics(metrics, step=self.progress_in_iter)
self.meter.clear_meters()
# random resizing
if (self.progress_in_iter + 1) % 10 == 0:
self.input_size = self.exp.random_resize(
self.train_loader, self.epoch, self.rank, self.is_distributed
)
@property
def progress_in_iter(self):
return self.epoch * self.max_iter + self.iter
def resume_train(self, model):
if self.args.resume:
logger.info("resume training")
if self.args.ckpt is None:
ckpt_file = os.path.join(self.file_name, "latest" + "_ckpt.pth")
else:
ckpt_file = self.args.ckpt
ckpt = torch.load(ckpt_file, map_location=self.device)
# resume the model/optimizer state dict
model.load_state_dict(ckpt["model"])
self.optimizer.load_state_dict(ckpt["optimizer"])
self.best_ap = ckpt.pop("best_ap", 0)
# resume the training states variables
start_epoch = (
self.args.start_epoch - 1
if self.args.start_epoch is not None
else ckpt["start_epoch"]
)
self.start_epoch = start_epoch
logger.info(
"loaded checkpoint '{}' (epoch {})".format(
self.args.resume, self.start_epoch
)
) # noqa
else:
if self.args.ckpt is not None:
logger.info("loading checkpoint for fine tuning")
ckpt_file = self.args.ckpt
ckpt = torch.load(ckpt_file, map_location=self.device)["model"]
model = load_ckpt(model, ckpt)
self.start_epoch = 0
return model
def evaluate_and_save_model(self):
if self.use_model_ema:
evalmodel = self.ema_model.ema
else:
evalmodel = self.model
if is_parallel(evalmodel):
evalmodel = evalmodel.module
with adjust_status(evalmodel, training=False):
(ap50_95, ap50, summary), predictions = self.exp.eval(
evalmodel, self.evaluator, self.is_distributed, return_outputs=True
)
update_best_ckpt = ap50_95 > self.best_ap
self.best_ap = max(self.best_ap, ap50_95)
if self.rank == 0:
if self.args.logger == "tensorboard":
self.tblogger.add_scalar("val/COCOAP50", ap50, self.epoch + 1)
self.tblogger.add_scalar("val/COCOAP50_95", ap50_95, self.epoch + 1)
if self.args.logger == "wandb":
self.wandb_logger.log_metrics({
"val/COCOAP50": ap50,
"val/COCOAP50_95": ap50_95,
"train/epoch": self.epoch + 1,
})
self.wandb_logger.log_images(predictions)
logger.info("\n" + summary)
synchronize()
self.save_ckpt("last_epoch", update_best_ckpt, ap=ap50_95)
if self.save_history_ckpt:
self.save_ckpt(f"epoch_{self.epoch + 1}", ap=ap50_95)
def save_ckpt(self, ckpt_name, update_best_ckpt=False, ap=None):
if self.rank == 0:
save_model = self.ema_model.ema if self.use_model_ema else self.model
logger.info("Save weights to {}".format(self.file_name))
ckpt_state = {
"start_epoch": self.epoch + 1,
"model": save_model.state_dict(),
"optimizer": self.optimizer.state_dict(),
"best_ap": self.best_ap,
"curr_ap": ap,
}
save_checkpoint(
ckpt_state,
update_best_ckpt,
self.file_name,
ckpt_name,
)
if self.args.logger == "wandb":
self.wandb_logger.save_checkpoint(
self.file_name,
ckpt_name,
update_best_ckpt,
metadata={
"epoch": self.epoch + 1,
"optimizer": self.optimizer.state_dict(),
"best_ap": self.best_ap,
"curr_ap": ap
}
)