Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# Copyright (c) HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Finetuning the library models for multimodal multiclass prediction on MM-IMDB dataset.""" | |
import argparse | |
import glob | |
import json | |
import logging | |
import os | |
import random | |
import numpy as np | |
import torch | |
from sklearn.metrics import f1_score | |
from torch import nn | |
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler | |
from torch.utils.data.distributed import DistributedSampler | |
from tqdm import tqdm, trange | |
from utils_mmimdb import ImageEncoder, JsonlDataset, collate_fn, get_image_transforms, get_mmimdb_labels | |
import transformers | |
from transformers import ( | |
WEIGHTS_NAME, | |
AdamW, | |
AutoConfig, | |
AutoModel, | |
AutoTokenizer, | |
MMBTConfig, | |
MMBTForClassification, | |
get_linear_schedule_with_warmup, | |
) | |
from transformers.trainer_utils import is_main_process | |
try: | |
from torch.utils.tensorboard import SummaryWriter | |
except ImportError: | |
from tensorboardX import SummaryWriter | |
logger = logging.getLogger(__name__) | |
def set_seed(args): | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
if args.n_gpu > 0: | |
torch.cuda.manual_seed_all(args.seed) | |
def train(args, train_dataset, model, tokenizer, criterion): | |
"""Train the model""" | |
if args.local_rank in [-1, 0]: | |
tb_writer = SummaryWriter() | |
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) | |
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) | |
train_dataloader = DataLoader( | |
train_dataset, | |
sampler=train_sampler, | |
batch_size=args.train_batch_size, | |
collate_fn=collate_fn, | |
num_workers=args.num_workers, | |
) | |
if args.max_steps > 0: | |
t_total = args.max_steps | |
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 | |
else: | |
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs | |
# Prepare optimizer and schedule (linear warmup and decay) | |
no_decay = ["bias", "LayerNorm.weight"] | |
optimizer_grouped_parameters = [ | |
{ | |
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], | |
"weight_decay": args.weight_decay, | |
}, | |
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, | |
] | |
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) | |
scheduler = get_linear_schedule_with_warmup( | |
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total | |
) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
# multi-gpu training (should be after apex fp16 initialization) | |
if args.n_gpu > 1: | |
model = nn.DataParallel(model) | |
# Distributed training (should be after apex fp16 initialization) | |
if args.local_rank != -1: | |
model = nn.parallel.DistributedDataParallel( | |
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True | |
) | |
# Train! | |
logger.info("***** Running training *****") | |
logger.info(" Num examples = %d", len(train_dataset)) | |
logger.info(" Num Epochs = %d", args.num_train_epochs) | |
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) | |
logger.info( | |
" Total train batch size (w. parallel, distributed & accumulation) = %d", | |
args.train_batch_size | |
* args.gradient_accumulation_steps | |
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1), | |
) | |
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) | |
logger.info(" Total optimization steps = %d", t_total) | |
global_step = 0 | |
tr_loss, logging_loss = 0.0, 0.0 | |
best_f1, n_no_improve = 0, 0 | |
model.zero_grad() | |
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) | |
set_seed(args) # Added here for reproductibility | |
for _ in train_iterator: | |
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) | |
for step, batch in enumerate(epoch_iterator): | |
model.train() | |
batch = tuple(t.to(args.device) for t in batch) | |
labels = batch[5] | |
inputs = { | |
"input_ids": batch[0], | |
"input_modal": batch[2], | |
"attention_mask": batch[1], | |
"modal_start_tokens": batch[3], | |
"modal_end_tokens": batch[4], | |
} | |
outputs = model(**inputs) | |
logits = outputs[0] # model outputs are always tuple in transformers (see doc) | |
loss = criterion(logits, labels) | |
if args.n_gpu > 1: | |
loss = loss.mean() # mean() to average on multi-gpu parallel training | |
if args.gradient_accumulation_steps > 1: | |
loss = loss / args.gradient_accumulation_steps | |
if args.fp16: | |
with amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
loss.backward() | |
tr_loss += loss.item() | |
if (step + 1) % args.gradient_accumulation_steps == 0: | |
if args.fp16: | |
nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) | |
else: | |
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
optimizer.step() | |
scheduler.step() # Update learning rate schedule | |
model.zero_grad() | |
global_step += 1 | |
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: | |
logs = {} | |
if ( | |
args.local_rank == -1 and args.evaluate_during_training | |
): # Only evaluate when single GPU otherwise metrics may not average well | |
results = evaluate(args, model, tokenizer, criterion) | |
for key, value in results.items(): | |
eval_key = "eval_{}".format(key) | |
logs[eval_key] = value | |
loss_scalar = (tr_loss - logging_loss) / args.logging_steps | |
learning_rate_scalar = scheduler.get_lr()[0] | |
logs["learning_rate"] = learning_rate_scalar | |
logs["loss"] = loss_scalar | |
logging_loss = tr_loss | |
for key, value in logs.items(): | |
tb_writer.add_scalar(key, value, global_step) | |
print(json.dumps({**logs, **{"step": global_step}})) | |
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: | |
# Save model checkpoint | |
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
model_to_save = ( | |
model.module if hasattr(model, "module") else model | |
) # Take care of distributed/parallel training | |
torch.save(model_to_save.state_dict(), os.path.join(output_dir, WEIGHTS_NAME)) | |
torch.save(args, os.path.join(output_dir, "training_args.bin")) | |
logger.info("Saving model checkpoint to %s", output_dir) | |
if args.max_steps > 0 and global_step > args.max_steps: | |
epoch_iterator.close() | |
break | |
if args.max_steps > 0 and global_step > args.max_steps: | |
train_iterator.close() | |
break | |
if args.local_rank == -1: | |
results = evaluate(args, model, tokenizer, criterion) | |
if results["micro_f1"] > best_f1: | |
best_f1 = results["micro_f1"] | |
n_no_improve = 0 | |
else: | |
n_no_improve += 1 | |
if n_no_improve > args.patience: | |
train_iterator.close() | |
break | |
if args.local_rank in [-1, 0]: | |
tb_writer.close() | |
return global_step, tr_loss / global_step | |
def evaluate(args, model, tokenizer, criterion, prefix=""): | |
# Loop to handle MNLI double evaluation (matched, mis-matched) | |
eval_output_dir = args.output_dir | |
eval_dataset = load_examples(args, tokenizer, evaluate=True) | |
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: | |
os.makedirs(eval_output_dir) | |
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) | |
# Note that DistributedSampler samples randomly | |
eval_sampler = SequentialSampler(eval_dataset) | |
eval_dataloader = DataLoader( | |
eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate_fn | |
) | |
# multi-gpu eval | |
if args.n_gpu > 1 and not isinstance(model, nn.DataParallel): | |
model = nn.DataParallel(model) | |
# Eval! | |
logger.info("***** Running evaluation {} *****".format(prefix)) | |
logger.info(" Num examples = %d", len(eval_dataset)) | |
logger.info(" Batch size = %d", args.eval_batch_size) | |
eval_loss = 0.0 | |
nb_eval_steps = 0 | |
preds = None | |
out_label_ids = None | |
for batch in tqdm(eval_dataloader, desc="Evaluating"): | |
model.eval() | |
batch = tuple(t.to(args.device) for t in batch) | |
with torch.no_grad(): | |
batch = tuple(t.to(args.device) for t in batch) | |
labels = batch[5] | |
inputs = { | |
"input_ids": batch[0], | |
"input_modal": batch[2], | |
"attention_mask": batch[1], | |
"modal_start_tokens": batch[3], | |
"modal_end_tokens": batch[4], | |
} | |
outputs = model(**inputs) | |
logits = outputs[0] # model outputs are always tuple in transformers (see doc) | |
tmp_eval_loss = criterion(logits, labels) | |
eval_loss += tmp_eval_loss.mean().item() | |
nb_eval_steps += 1 | |
if preds is None: | |
preds = torch.sigmoid(logits).detach().cpu().numpy() > 0.5 | |
out_label_ids = labels.detach().cpu().numpy() | |
else: | |
preds = np.append(preds, torch.sigmoid(logits).detach().cpu().numpy() > 0.5, axis=0) | |
out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0) | |
eval_loss = eval_loss / nb_eval_steps | |
result = { | |
"loss": eval_loss, | |
"macro_f1": f1_score(out_label_ids, preds, average="macro"), | |
"micro_f1": f1_score(out_label_ids, preds, average="micro"), | |
} | |
output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") | |
with open(output_eval_file, "w") as writer: | |
logger.info("***** Eval results {} *****".format(prefix)) | |
for key in sorted(result.keys()): | |
logger.info(" %s = %s", key, str(result[key])) | |
writer.write("%s = %s\n" % (key, str(result[key]))) | |
return result | |
def load_examples(args, tokenizer, evaluate=False): | |
path = os.path.join(args.data_dir, "dev.jsonl" if evaluate else "train.jsonl") | |
transforms = get_image_transforms() | |
labels = get_mmimdb_labels() | |
dataset = JsonlDataset(path, tokenizer, transforms, labels, args.max_seq_length - args.num_image_embeds - 2) | |
return dataset | |
def main(): | |
parser = argparse.ArgumentParser() | |
# Required parameters | |
parser.add_argument( | |
"--data_dir", | |
default=None, | |
type=str, | |
required=True, | |
help="The input data dir. Should contain the .jsonl files for MMIMDB.", | |
) | |
parser.add_argument( | |
"--model_name_or_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models", | |
) | |
parser.add_argument( | |
"--output_dir", | |
default=None, | |
type=str, | |
required=True, | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
# Other parameters | |
parser.add_argument( | |
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
default="", | |
type=str, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--cache_dir", | |
default=None, | |
type=str, | |
help="Where do you want to store the pre-trained models downloaded from huggingface.co", | |
) | |
parser.add_argument( | |
"--max_seq_length", | |
default=128, | |
type=int, | |
help=( | |
"The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
), | |
) | |
parser.add_argument( | |
"--num_image_embeds", default=1, type=int, help="Number of Image Embeddings from the Image Encoder" | |
) | |
parser.add_argument("--do_train", action="store_true", help="Whether to run training.") | |
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") | |
parser.add_argument( | |
"--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." | |
) | |
parser.add_argument( | |
"--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." | |
) | |
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") | |
parser.add_argument( | |
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") | |
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") | |
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument( | |
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." | |
) | |
parser.add_argument("--patience", default=5, type=int, help="Patience for Early Stopping.") | |
parser.add_argument( | |
"--max_steps", | |
default=-1, | |
type=int, | |
help="If > 0: set total number of training steps to perform. Override num_train_epochs.", | |
) | |
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") | |
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") | |
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") | |
parser.add_argument( | |
"--eval_all_checkpoints", | |
action="store_true", | |
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", | |
) | |
parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") | |
parser.add_argument("--num_workers", type=int, default=8, help="number of worker threads for dataloading") | |
parser.add_argument( | |
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" | |
) | |
parser.add_argument( | |
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" | |
) | |
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") | |
parser.add_argument( | |
"--fp16", | |
action="store_true", | |
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", | |
) | |
parser.add_argument( | |
"--fp16_opt_level", | |
type=str, | |
default="O1", | |
help=( | |
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." | |
"See details at https://nvidia.github.io/apex/amp.html" | |
), | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") | |
parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") | |
args = parser.parse_args() | |
if ( | |
os.path.exists(args.output_dir) | |
and os.listdir(args.output_dir) | |
and args.do_train | |
and not args.overwrite_output_dir | |
): | |
raise ValueError( | |
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( | |
args.output_dir | |
) | |
) | |
# Setup distant debugging if needed | |
if args.server_ip and args.server_port: | |
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
import ptvsd | |
print("Waiting for debugger attach") | |
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
ptvsd.wait_for_attach() | |
# Setup CUDA, GPU & distributed training | |
if args.local_rank == -1 or args.no_cuda: | |
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() | |
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs | |
torch.cuda.set_device(args.local_rank) | |
device = torch.device("cuda", args.local_rank) | |
torch.distributed.init_process_group(backend="nccl") | |
args.n_gpu = 1 | |
args.device = device | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, | |
) | |
logger.warning( | |
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
args.local_rank, | |
device, | |
args.n_gpu, | |
bool(args.local_rank != -1), | |
args.fp16, | |
) | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
if is_main_process(args.local_rank): | |
transformers.utils.logging.set_verbosity_info() | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Set seed | |
set_seed(args) | |
# Load pretrained model and tokenizer | |
if args.local_rank not in [-1, 0]: | |
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
# Setup model | |
labels = get_mmimdb_labels() | |
num_labels = len(labels) | |
transformer_config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path) | |
tokenizer = AutoTokenizer.from_pretrained( | |
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, | |
do_lower_case=args.do_lower_case, | |
cache_dir=args.cache_dir, | |
) | |
transformer = AutoModel.from_pretrained( | |
args.model_name_or_path, config=transformer_config, cache_dir=args.cache_dir | |
) | |
img_encoder = ImageEncoder(args) | |
config = MMBTConfig(transformer_config, num_labels=num_labels) | |
model = MMBTForClassification(config, transformer, img_encoder) | |
if args.local_rank == 0: | |
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
model.to(args.device) | |
logger.info("Training/evaluation parameters %s", args) | |
# Training | |
if args.do_train: | |
train_dataset = load_examples(args, tokenizer, evaluate=False) | |
label_frequences = train_dataset.get_label_frequencies() | |
label_frequences = [label_frequences[l] for l in labels] | |
label_weights = ( | |
torch.tensor(label_frequences, device=args.device, dtype=torch.float) / len(train_dataset) | |
) ** -1 | |
criterion = nn.BCEWithLogitsLoss(pos_weight=label_weights) | |
global_step, tr_loss = train(args, train_dataset, model, tokenizer, criterion) | |
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) | |
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() | |
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): | |
logger.info("Saving model checkpoint to %s", args.output_dir) | |
# Save a trained model, configuration and tokenizer using `save_pretrained()`. | |
# They can then be reloaded using `from_pretrained()` | |
model_to_save = ( | |
model.module if hasattr(model, "module") else model | |
) # Take care of distributed/parallel training | |
torch.save(model_to_save.state_dict(), os.path.join(args.output_dir, WEIGHTS_NAME)) | |
tokenizer.save_pretrained(args.output_dir) | |
# Good practice: save your training arguments together with the trained model | |
torch.save(args, os.path.join(args.output_dir, "training_args.bin")) | |
# Load a trained model and vocabulary that you have fine-tuned | |
model = MMBTForClassification(config, transformer, img_encoder) | |
model.load_state_dict(torch.load(os.path.join(args.output_dir, WEIGHTS_NAME))) | |
tokenizer = AutoTokenizer.from_pretrained(args.output_dir) | |
model.to(args.device) | |
# Evaluation | |
results = {} | |
if args.do_eval and args.local_rank in [-1, 0]: | |
checkpoints = [args.output_dir] | |
if args.eval_all_checkpoints: | |
checkpoints = [ | |
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) | |
] | |
logger.info("Evaluate the following checkpoints: %s", checkpoints) | |
for checkpoint in checkpoints: | |
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" | |
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" | |
model = MMBTForClassification(config, transformer, img_encoder) | |
model.load_state_dict(torch.load(checkpoint)) | |
model.to(args.device) | |
result = evaluate(args, model, tokenizer, criterion, prefix=prefix) | |
result = {k + "_{}".format(global_step): v for k, v in result.items()} | |
results.update(result) | |
return results | |
if __name__ == "__main__": | |
main() | |