Spaces:
Runtime error
Runtime error
compositional_test
/
transformers
/examples
/research_projects
/movement-pruning
/counts_parameters.py
# Copyright 2020-present, the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Count remaining (non-zero) weights in the encoder (i.e. the transformer layers). | |
Sparsity and remaining weights levels are equivalent: sparsity % = 100 - remaining weights %. | |
""" | |
import argparse | |
import os | |
import torch | |
from emmental.modules import ThresholdBinarizer, TopKBinarizer | |
def main(args): | |
serialization_dir = args.serialization_dir | |
pruning_method = args.pruning_method | |
threshold = args.threshold | |
st = torch.load(os.path.join(serialization_dir, "pytorch_model.bin"), map_location="cpu") | |
remaining_count = 0 # Number of remaining (not pruned) params in the encoder | |
encoder_count = 0 # Number of params in the encoder | |
print("name".ljust(60, " "), "Remaining Weights %", "Remaining Weight") | |
for name, param in st.items(): | |
if "encoder" not in name: | |
continue | |
if "mask_scores" in name: | |
if pruning_method == "topK": | |
mask_ones = TopKBinarizer.apply(param, threshold).sum().item() | |
elif pruning_method == "sigmoied_threshold": | |
mask_ones = ThresholdBinarizer.apply(param, threshold, True).sum().item() | |
elif pruning_method == "l0": | |
l, r = -0.1, 1.1 | |
s = torch.sigmoid(param) | |
s_bar = s * (r - l) + l | |
mask = s_bar.clamp(min=0.0, max=1.0) | |
mask_ones = (mask > 0.0).sum().item() | |
else: | |
raise ValueError("Unknown pruning method") | |
remaining_count += mask_ones | |
print(name.ljust(60, " "), str(round(100 * mask_ones / param.numel(), 3)).ljust(20, " "), str(mask_ones)) | |
else: | |
encoder_count += param.numel() | |
if "bias" in name or "LayerNorm" in name: | |
remaining_count += param.numel() | |
print("") | |
print("Remaining Weights (global) %: ", 100 * remaining_count / encoder_count) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--pruning_method", | |
choices=["l0", "topK", "sigmoied_threshold"], | |
type=str, | |
required=True, | |
help=( | |
"Pruning Method (l0 = L0 regularization, topK = Movement pruning, sigmoied_threshold = Soft movement" | |
" pruning)" | |
), | |
) | |
parser.add_argument( | |
"--threshold", | |
type=float, | |
required=False, | |
help=( | |
"For `topK`, it is the level of remaining weights (in %) in the fine-pruned model." | |
"For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." | |
"Not needed for `l0`" | |
), | |
) | |
parser.add_argument( | |
"--serialization_dir", | |
type=str, | |
required=True, | |
help="Folder containing the model that was previously fine-pruned", | |
) | |
args = parser.parse_args() | |
main(args) | |