Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 HuggingFace Inc. team. | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import unittest | |
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer | |
from transformers.testing_utils import get_tests_dir | |
from ...test_tokenization_common import TokenizerTesterMixin | |
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_bpe.model") | |
class BartphoTokenizerTest(TokenizerTesterMixin, unittest.TestCase): | |
tokenizer_class = BartphoTokenizer | |
test_rust_tokenizer = False | |
test_sentencepiece = True | |
def setUp(self): | |
super().setUp() | |
vocab = ["▁This", "▁is", "▁a", "▁t", "est"] | |
vocab_tokens = dict(zip(vocab, range(len(vocab)))) | |
self.special_tokens_map = {"unk_token": "<unk>"} | |
self.monolingual_vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"]) | |
with open(self.monolingual_vocab_file, "w", encoding="utf-8") as fp: | |
for token in vocab_tokens: | |
fp.write(f"{token} {vocab_tokens[token]}\n") | |
tokenizer = BartphoTokenizer(SAMPLE_VOCAB, self.monolingual_vocab_file, **self.special_tokens_map) | |
tokenizer.save_pretrained(self.tmpdirname) | |
def get_tokenizer(self, **kwargs): | |
kwargs.update(self.special_tokens_map) | |
return BartphoTokenizer.from_pretrained(self.tmpdirname, **kwargs) | |
def get_input_output_texts(self, tokenizer): | |
input_text = "This is a là test" | |
output_text = "This is a<unk><unk> test" | |
return input_text, output_text | |
def test_full_tokenizer(self): | |
tokenizer = BartphoTokenizer(SAMPLE_VOCAB, self.monolingual_vocab_file, **self.special_tokens_map) | |
text = "This is a là test" | |
bpe_tokens = "▁This ▁is ▁a ▁l à ▁t est".split() | |
tokens = tokenizer.tokenize(text) | |
self.assertListEqual(tokens, bpe_tokens) | |
input_tokens = tokens + [tokenizer.unk_token] | |
input_bpe_tokens = [4, 5, 6, 3, 3, 7, 8, 3] | |
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens) | |