Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import math | |
import unittest | |
from transformers import BloomConfig, is_torch_available | |
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, | |
BloomForCausalLM, | |
BloomForQuestionAnswering, | |
BloomForSequenceClassification, | |
BloomForTokenClassification, | |
BloomModel, | |
BloomTokenizerFast, | |
) | |
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_10 | |
else: | |
is_torch_greater_or_equal_than_1_10 = False | |
class BloomModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=14, | |
seq_length=7, | |
is_training=True, | |
use_token_type_ids=False, | |
use_input_mask=True, | |
use_labels=True, | |
use_mc_token_ids=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_token_type_ids = use_token_type_ids | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.use_mc_token_ids = use_mc_token_ids | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_dropout_prob = attention_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = None | |
self.bos_token_id = vocab_size - 1 | |
self.eos_token_id = vocab_size - 1 | |
self.pad_token_id = vocab_size - 1 | |
def get_large_model_config(self): | |
return BloomConfig.from_pretrained("bigscience/bloom") | |
def prepare_config_and_inputs(self, gradient_checkpointing=False): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
sequence_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
config = self.get_config(gradient_checkpointing=gradient_checkpointing) | |
return (config, input_ids, input_mask, sequence_labels) | |
def get_config(self, gradient_checkpointing=False, slow_but_exact=True): | |
return BloomConfig( | |
vocab_size=self.vocab_size, | |
seq_length=self.seq_length, | |
hidden_size=self.hidden_size, | |
n_layer=self.num_hidden_layers, | |
n_head=self.num_attention_heads, | |
hidden_dropout=self.hidden_dropout_prob, | |
attention_dropout=self.attention_dropout_prob, | |
n_positions=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
use_cache=True, | |
bos_token_id=self.bos_token_id, | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.pad_token_id, | |
num_labels=self.num_labels, | |
gradient_checkpointing=gradient_checkpointing, | |
slow_but_exact=slow_but_exact, | |
dtype="float32", | |
) | |
def create_and_check_bloom_model(self, config, input_ids, input_mask, *args): | |
model = BloomModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(len(result.past_key_values), config.n_layer) | |
def create_and_check_bloom_model_past(self, config, input_ids, input_mask, *args): | |
model = BloomModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# first forward pass | |
outputs = model(input_ids, attention_mask=torch.ones_like(input_ids), use_cache=True) | |
outputs_use_cache_conf = model(input_ids, attention_mask=torch.ones_like(input_ids)) | |
outputs_no_past = model(input_ids, use_cache=False, attention_mask=torch.ones_like(input_ids)) | |
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) | |
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) | |
past = outputs["past_key_values"] | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# append to next input_ids and token_type_ids | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
output_from_no_past = model(next_input_ids)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past)["last_hidden_state"] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_bloom_model_attention_mask_past(self, config, input_ids, input_mask, *args): | |
model = BloomModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# create attention mask | |
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) | |
half_seq_length = self.seq_length // 2 | |
attn_mask[:, half_seq_length:] = 0 | |
# first forward pass | |
output, past = model(input_ids, attention_mask=attn_mask).to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# change a random masked slice from input_ids | |
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 | |
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) | |
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens | |
# append to next input_ids and attn_mask | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
attn_mask = torch.cat( | |
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], | |
dim=1, | |
) | |
# get two different outputs | |
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_bloom_model_past_large_inputs(self, config, input_ids, input_mask, *args): | |
model = BloomModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# first forward pass | |
outputs = model(input_ids, attention_mask=input_mask, use_cache=True) | |
output, past = outputs.to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) | |
# append to next input_ids and token_type_ids | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) | |
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past)[ | |
"last_hidden_state" | |
] | |
self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_lm_head_model(self, config, input_ids, input_mask, *args): | |
model = BloomForCausalLM(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, labels=input_ids) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_sequence_classification_model(self, config, input_ids, input_mask, *args): | |
config.num_labels = self.num_labels | |
model = BloomForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_token_classification_model(self, config, input_ids, input_mask, *args): | |
model = BloomForTokenClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_question_answering_model(self, config, input_ids, input_mask, *args): | |
model = BloomForQuestionAnswering(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_forward_and_backwards( | |
self, config, input_ids, input_mask, *args, gradient_checkpointing=False | |
): | |
model = BloomForCausalLM(config) | |
model.to(torch_device) | |
if gradient_checkpointing: | |
model.gradient_checkpointing_enable() | |
result = model(input_ids, labels=input_ids) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
result.loss.backward() | |
def create_and_check_bloom_weight_initialization(self, config, *args): | |
model = BloomModel(config) | |
model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layer) | |
for key in model.state_dict().keys(): | |
if "c_proj" in key and "weight" in key: | |
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) | |
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, input_mask, sequence_labels = config_and_inputs | |
inputs_dict = {"input_ids": input_ids} | |
return config, inputs_dict | |
class BloomModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
BloomModel, | |
BloomForCausalLM, | |
BloomForSequenceClassification, | |
BloomForTokenClassification, | |
BloomForQuestionAnswering, | |
) | |
if is_torch_available() | |
else () | |
) | |
all_generative_model_classes = (BloomForCausalLM,) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": BloomModel, | |
"question-answering": BloomForQuestionAnswering, | |
"text-classification": BloomForSequenceClassification, | |
"text-generation": BloomForCausalLM, | |
"token-classification": BloomForTokenClassification, | |
"zero-shot": BloomForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
fx_compatible = True | |
test_missing_keys = False | |
test_pruning = False | |
test_torchscript = True # torch.autograd functions seems to be not supported | |
def setUp(self): | |
self.model_tester = BloomModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=BloomConfig, n_embd=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_bloom_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_bloom_model(*config_and_inputs) | |
def test_bloom_model_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_bloom_model_past(*config_and_inputs) | |
def test_bloom_model_att_mask_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_bloom_model_attention_mask_past(*config_and_inputs) | |
def test_bloom_model_past_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_bloom_model_past_large_inputs(*config_and_inputs) | |
def test_bloom_lm_head_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_lm_head_model(*config_and_inputs) | |
def test_bloom_sequence_classification_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_sequence_classification_model(*config_and_inputs) | |
def test_bloom_token_classification_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_token_classification_model(*config_and_inputs) | |
def test_bloom_gradient_checkpointing(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) | |
def test_bloom_weight_initialization(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_bloom_weight_initialization(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = BloomModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
def test_simple_generation(self): | |
# This test is a bit flaky. For some GPU architectures, pytorch sets by default allow_fp16_reduced_precision_reduction = True and some operations | |
# do not give the same results under this configuration, especially torch.baddmm and torch.bmm. https://pytorch.org/docs/stable/notes/numerical_accuracy.html#fp16-on-mi200 | |
# As we leave the default value (True) for allow_fp16_reduced_precision_reduction , the tests failed when running in half-precision with smaller models (560m) | |
# Please see: https://pytorch.org/docs/stable/notes/cuda.html#reduced-precision-reduction-in-fp16-gemms | |
# This discrepancy is observed only when using small models and seems to be stable for larger models. | |
# Our conclusion is that these operations are flaky for small inputs but seems to be stable for larger inputs (for the functions `baddmm` and `bmm`), and therefore for larger models. | |
# Here is a summary of an ablation study of our observations | |
# EXPECTED_OUTPUT = "I enjoy walking with my cute dog, and I love to watch the kids play. I am a very active person, and I am a very good listener. I am a very good person, and I am a very good person. I am a" | |
# 560m + allow_fp16_reduced_precision_reduction = False + torch.bmm ==> PASS | |
# 560m + allow_fp16_reduced_precision_reduction = False + torch.baddm ==> PASS | |
# 560m + allow_fp16_reduced_precision_reduction = True + torch.baddm ==> PASS | |
# 560m + allow_fp16_reduced_precision_reduction = True + torch.bmm ==> FAIL | |
# EXPECTED_OUTPUT = "I enjoy walking with my cute dog, but I also enjoy hiking, biking, and swimming. I love to cook and bake. I love to cook and bake. I love to cook and bake. I love to cook and bake. I love" | |
# >=1b1 + allow_fp16_reduced_precision_reduction = True + torch.baddm ==> PASS (for use_cache=True and use_cache=False) | |
# >=1b1 + allow_fp16_reduced_precision_reduction = True + torch.bmm ==> PASS | |
# >=1b1 + allow_fp16_reduced_precision_reduction = False + torch.bmm ==> PASS | |
path_560m = "bigscience/bloom-560m" | |
model = BloomForCausalLM.from_pretrained(path_560m, use_cache=True, revision="gs555750").cuda() | |
model = model.eval() | |
tokenizer = BloomTokenizerFast.from_pretrained(path_560m) | |
input_sentence = "I enjoy walking with my cute dog" | |
# This output has been obtained using fp32 model on the huggingface DGX workstation - NVIDIA A100 GPU | |
EXPECTED_OUTPUT = ( | |
"I enjoy walking with my cute dog, and I love to watch the kids play with the kids. I am a very " | |
"active person, and I enjoy working out, and I am a very active person. I am a very active person, and I" | |
) | |
input_ids = tokenizer.encode(input_sentence, return_tensors="pt") | |
greedy_output = model.generate(input_ids.cuda(), max_length=50) | |
self.assertEqual(tokenizer.decode(greedy_output[0], skip_special_tokens=True), EXPECTED_OUTPUT) | |
def test_batch_generation(self): | |
path_560m = "bigscience/bloom-560m" | |
model = BloomForCausalLM.from_pretrained(path_560m, use_cache=True, revision="gs555750").cuda() | |
model = model.eval() | |
tokenizer = BloomTokenizerFast.from_pretrained(path_560m, padding_side="left") | |
input_sentence = ["I enjoy walking with my cute dog", "I enjoy walking with my cute dog"] | |
input_ids = tokenizer.batch_encode_plus(input_sentence, return_tensors="pt", padding=True) | |
greedy_output = model.generate( | |
input_ids["input_ids"].cuda(), attention_mask=input_ids["attention_mask"], max_length=50, do_sample=False | |
) | |
self.assertEqual( | |
tokenizer.decode(greedy_output[0], skip_special_tokens=True), | |
tokenizer.decode(greedy_output[1], skip_special_tokens=True), | |
) | |
def test_batch_generation_padd(self): | |
path_560m = "bigscience/bloom-560m" | |
model = BloomForCausalLM.from_pretrained(path_560m, use_cache=True, revision="gs555750").cuda() | |
model = model.eval() | |
tokenizer = BloomTokenizerFast.from_pretrained(path_560m, padding_side="left") | |
input_sentence = ["I enjoy walking with my cute dog", "Hello my name is"] | |
input_sentence_without_pad = "Hello my name is" | |
input_ids = tokenizer.batch_encode_plus(input_sentence, return_tensors="pt", padding=True) | |
input_ids_without_pad = tokenizer.encode(input_sentence_without_pad, return_tensors="pt") | |
greedy_output = model.generate( | |
input_ids["input_ids"].cuda(), attention_mask=input_ids["attention_mask"], max_length=50, do_sample=False | |
) | |
greedy_output_without_pad = model.generate(input_ids_without_pad.cuda(), max_length=50, do_sample=False) | |
# test token values | |
self.assertEqual(greedy_output[-1, 3:].tolist(), greedy_output_without_pad[0, :-3].tolist()) | |
# test reconstructions | |
self.assertEqual( | |
tokenizer.decode(greedy_output[-1, 3:], skip_special_tokens=True), | |
tokenizer.decode(greedy_output_without_pad[0, :-3], skip_special_tokens=True), | |
) | |
class BloomEmbeddingTest(unittest.TestCase): | |
""" | |
The goal here is to compare the embeddings generated by the model trained | |
using Megatron-LM with the one from the transformers library, with a small GPT2-like model | |
to ensure that the conversion from Megatron-LM to transformers has been done successfully. | |
The script compares the logits of the embedding layer and the transformer layers. | |
WARNING: It is expected that these logits will not have exactly the same statistics when running | |
the code on CPU or GPU. For more info, please visit: | |
- https://github.com/pytorch/pytorch/issues/76052#issuecomment-1103193548 | |
- https://discuss.pytorch.org/t/reproducibility-issue-between-intel-and-amd-cpus/144779/9 | |
You need to install tokenizers following this readme: | |
- https://huggingface.co/bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles | |
Tokenizer used during training: | |
- https://huggingface.co/bigscience-catalogue-data-dev/byte-level-bpe-tokenizer-no-norm-250k-whitespace-and-eos-regex-alpha-v3-dedup-lines-articles | |
# TODO change the script (or just add skip) when building the env with tokenizers 0.12.0 | |
""" | |
def setUp(self): | |
super().setUp() | |
self.path_bigscience_model = "bigscience/bigscience-small-testing" | |
def test_embeddings(self): | |
# The config in this checkpoint has `bfloat16` as `torch_dtype` -> model in `bfloat16` | |
model = BloomForCausalLM.from_pretrained(self.path_bigscience_model, torch_dtype="auto") | |
model.eval() | |
EMBEDDINGS_DS_BEFORE_LN_BF_16_MEAN = { | |
3478: 0.0002307891845703125, | |
368: -0.000568389892578125, | |
109586: -0.0003910064697265625, | |
35433: -0.000194549560546875, | |
2: 0.0004138946533203125, | |
77: 0.000659942626953125, | |
132619: -0.00031280517578125, | |
2175: 0.000457763671875, | |
23714: 0.000263214111328125, | |
73173: -0.000286102294921875, | |
144252: 0.00052642822265625, | |
} | |
EMBEDDINGS_DS_BEFORE_LN_BF_16_MIN = { | |
3478: -0.00921630859375, | |
368: -0.010009765625, | |
109586: -0.01031494140625, | |
35433: -0.01177978515625, | |
2: -0.0074462890625, | |
77: -0.00848388671875, | |
132619: -0.009521484375, | |
2175: -0.0074462890625, | |
23714: -0.0145263671875, | |
73173: -0.007415771484375, | |
144252: -0.01007080078125, | |
} | |
EMBEDDINGS_DS_BEFORE_LN_BF_16_MAX = { | |
3478: 0.0128173828125, | |
368: 0.01214599609375, | |
109586: 0.0111083984375, | |
35433: 0.01019287109375, | |
2: 0.0157470703125, | |
77: 0.0174560546875, | |
132619: 0.0078125, | |
2175: 0.0113525390625, | |
23714: 0.0146484375, | |
73173: 0.01116943359375, | |
144252: 0.01141357421875, | |
} | |
EMBEDDINGS_DS_BEFORE_LN_BF_16_SUM = {"value": 0.08203125} | |
EMBEDDINGS_DS_BEFORE_LN_F_16_MEAN = { | |
132619: -0.00031256675720214844, | |
3478: 0.00023090839385986328, | |
368: -0.0005702972412109375, | |
109586: -0.00039124488830566406, | |
35433: -0.000194549560546875, | |
2: 0.0004146099090576172, | |
2175: 0.0004572868347167969, | |
23714: 0.00026416778564453125, | |
73173: -0.0002865791320800781, | |
144252: 0.0005254745483398438, | |
77: 0.0006618499755859375, | |
} | |
EMBEDDINGS_DS_BEFORE_LN_F_16_MIN = { | |
3478: -0.00921630859375, | |
368: -0.010009765625, | |
109586: -0.01031494140625, | |
35433: -0.01177978515625, | |
2: -0.0074462890625, | |
77: -0.00848388671875, | |
132619: -0.009521484375, | |
2175: -0.0074462890625, | |
23714: -0.0145263671875, | |
73173: -0.007415771484375, | |
144252: -0.01007080078125, | |
} | |
EMBEDDINGS_DS_BEFORE_LN_F_16_MAX = { | |
3478: 0.0128173828125, | |
368: 0.01214599609375, | |
109586: 0.0111083984375, | |
35433: 0.01019287109375, | |
2: 0.0157470703125, | |
77: 0.0174560546875, | |
132619: 0.0078125, | |
2175: 0.0113525390625, | |
23714: 0.0146484375, | |
73173: 0.01116943359375, | |
144252: 0.01141357421875, | |
} | |
EMBEDDINGS_DS_BEFORE_LN_F_16_SUM = {"value": 0.0821533203125} | |
EMBEDDINGS_DS_BEFORE_LN_F_32_MEAN = { | |
132619: -0.00031267106533050537, | |
3478: 0.00023087859153747559, | |
368: -0.0005701072514057159, | |
109586: -0.0003911703824996948, | |
35433: -0.0001944899559020996, | |
2: 0.0004146844148635864, | |
2175: 0.00045740045607089996, | |
23714: 0.0002641640603542328, | |
73173: -0.0002864748239517212, | |
144252: 0.0005256589502096176, | |
77: 0.0006617321632802486, | |
} | |
EMBEDDINGS_DS_BEFORE_LN_F_32_MIN = { | |
3478: -0.00921630859375, | |
368: -0.010009765625, | |
109586: -0.01031494140625, | |
35433: -0.01177978515625, | |
2: -0.0074462890625, | |
77: -0.00848388671875, | |
132619: -0.009521484375, | |
2175: -0.0074462890625, | |
23714: -0.0145263671875, | |
73173: -0.007415771484375, | |
144252: -0.01007080078125, | |
} | |
EMBEDDINGS_DS_BEFORE_LN_F_32_MAX = { | |
3478: 0.0128173828125, | |
368: 0.01214599609375, | |
109586: 0.0111083984375, | |
35433: 0.01019287109375, | |
2: 0.0157470703125, | |
77: 0.0174560546875, | |
132619: 0.0078125, | |
2175: 0.0113525390625, | |
23714: 0.0146484375, | |
73173: 0.01116943359375, | |
144252: 0.01141357421875, | |
} | |
EMBEDDINGS_DS_BEFORE_LN_F_32_SUM = {"value": 0.08217757940292358} | |
TEST_EMBEDDINGS = { | |
"torch.bfloat16": { | |
"mean": EMBEDDINGS_DS_BEFORE_LN_BF_16_MEAN, | |
"max": EMBEDDINGS_DS_BEFORE_LN_BF_16_MAX, | |
"min": EMBEDDINGS_DS_BEFORE_LN_BF_16_MIN, | |
"sum": EMBEDDINGS_DS_BEFORE_LN_BF_16_SUM, | |
}, | |
"torch.float32": { | |
"mean": EMBEDDINGS_DS_BEFORE_LN_F_32_MEAN, | |
"max": EMBEDDINGS_DS_BEFORE_LN_F_32_MAX, | |
"min": EMBEDDINGS_DS_BEFORE_LN_F_32_MIN, | |
"sum": EMBEDDINGS_DS_BEFORE_LN_F_32_SUM, | |
}, | |
"torch.float": { | |
"mean": EMBEDDINGS_DS_BEFORE_LN_F_32_MEAN, | |
"max": EMBEDDINGS_DS_BEFORE_LN_F_32_MAX, | |
"min": EMBEDDINGS_DS_BEFORE_LN_F_32_MIN, | |
"sum": EMBEDDINGS_DS_BEFORE_LN_F_32_SUM, | |
}, | |
"torch.float16": { | |
"mean": EMBEDDINGS_DS_BEFORE_LN_F_16_MEAN, | |
"max": EMBEDDINGS_DS_BEFORE_LN_F_16_MAX, | |
"min": EMBEDDINGS_DS_BEFORE_LN_F_16_MIN, | |
"sum": EMBEDDINGS_DS_BEFORE_LN_F_16_SUM, | |
}, | |
} | |
# fmt: off | |
EXAMPLE_IDS = [3478, 368, 109586, 35433, 2, 77, 132619, 3478, 368, 109586, 35433, 2, 2175, 23714, 73173, 144252, 2, 77, 132619, 3478] | |
# fmt: on | |
EMBEDDINGS_DS_AFTER_LN_MEAN = { | |
3478: -6.580352783203125e-05, | |
368: 0.0001316070556640625, | |
109586: -0.00030517578125, | |
35433: 4.00543212890625e-05, | |
2: -7.2479248046875e-05, | |
77: -8.96453857421875e-05, | |
132619: 0.0001583099365234375, | |
2175: 2.1219253540039062e-05, | |
23714: -0.000247955322265625, | |
73173: -0.00021839141845703125, | |
144252: -0.0001430511474609375, | |
} | |
EMBEDDINGS_DS_AFTER_LN_MIN = { | |
3478: -1.6953125, | |
368: -1.6875, | |
109586: -1.6875, | |
35433: -2.125, | |
2: -1.390625, | |
77: -1.5390625, | |
132619: -1.875, | |
2175: -1.4609375, | |
23714: -2.296875, | |
73173: -1.3515625, | |
144252: -1.78125, | |
} | |
EMBEDDINGS_DS_AFTER_LN_MAX = { | |
3478: 2.265625, | |
368: 2.28125, | |
109586: 1.953125, | |
35433: 1.90625, | |
2: 2.703125, | |
77: 2.828125, | |
132619: 1.65625, | |
2175: 2.015625, | |
23714: 2.234375, | |
73173: 2.171875, | |
144252: 1.828125, | |
} | |
EMBEDDINGS_DS_AFTER_LN = { | |
"mean": EMBEDDINGS_DS_AFTER_LN_MEAN, | |
"min": EMBEDDINGS_DS_AFTER_LN_MIN, | |
"max": EMBEDDINGS_DS_AFTER_LN_MAX, | |
} | |
tensor_ids = torch.LongTensor([EXAMPLE_IDS]) | |
with torch.no_grad(): | |
embeddings = model.transformer.word_embeddings(tensor_ids) | |
embeddings_ln = model.transformer.word_embeddings_layernorm(embeddings) # | |
# first check the embeddings before LN | |
output_dict = {"min": {}, "max": {}, "mean": {}, "sum": {"value": embeddings.sum().item()}} | |
for i, idx in enumerate(EXAMPLE_IDS): | |
output_dict["min"][idx] = embeddings.min(dim=-1).values[0][i].item() | |
output_dict["max"][idx] = embeddings.max(dim=-1).values[0][i].item() | |
output_dict["mean"][idx] = embeddings.mean(dim=-1)[0][i].item() | |
for key in TEST_EMBEDDINGS[str(model.dtype)].keys(): | |
self.assertDictEqual(TEST_EMBEDDINGS[str(model.dtype)][key], output_dict[key]) | |
output_dict_norm = {"min": {}, "max": {}, "mean": {}} | |
for i, idx in enumerate(EXAMPLE_IDS): | |
output_dict_norm["min"][idx] = embeddings_ln.min(dim=-1).values[0][i].item() | |
output_dict_norm["max"][idx] = embeddings_ln.max(dim=-1).values[0][i].item() | |
output_dict_norm["mean"][idx] = embeddings_ln.mean(dim=-1)[0][i].item() | |
# This test does not pass when places = 2 | |
for i, key in enumerate(output_dict_norm.keys()): | |
for j, idx in enumerate(output_dict[key].keys()): | |
self.assertAlmostEqual(EMBEDDINGS_DS_AFTER_LN[key][idx], output_dict_norm[key][idx], places=1) | |
def test_hidden_states_transformers(self): | |
cuda_available = torch.cuda.is_available() | |
model = BloomModel.from_pretrained(self.path_bigscience_model, use_cache=False, torch_dtype="auto").to( | |
torch_device | |
) | |
model.eval() | |
# fmt: off | |
EXAMPLE_IDS = [3478, 368, 109586, 35433, 2, 77, 132619, 3478, 368, 109586, 35433, 2, 2175, 23714, 73173, 144252, 2, 77, 132619, 3478] | |
# fmt: on | |
MEAN_VALUE_LAST_LM = -4.3392181396484375e-05 | |
MIN_MAX_DICT = {"min": -2.0625, "max": 2.75} | |
tensor_ids = torch.LongTensor([EXAMPLE_IDS]) | |
with torch.no_grad(): | |
logits = model(tensor_ids.to(torch_device)) | |
output_dict = { | |
"min": logits.last_hidden_state.min(dim=-1).values[0][0].item(), | |
"max": logits.last_hidden_state.max(dim=-1).values[0][0].item(), | |
} | |
if cuda_available: | |
self.assertAlmostEqual(MEAN_VALUE_LAST_LM, logits.last_hidden_state.mean().item(), places=4) | |
else: | |
self.assertAlmostEqual(MEAN_VALUE_LAST_LM, logits.last_hidden_state.mean().item(), places=3) | |
self.assertDictEqual(MIN_MAX_DICT, output_dict) | |
def test_logits(self): | |
cuda_available = torch.cuda.is_available() | |
model = BloomForCausalLM.from_pretrained(self.path_bigscience_model, use_cache=False, torch_dtype="auto").to( | |
torch_device | |
) # load in bf16 | |
model.eval() | |
# fmt: off | |
EXAMPLE_IDS = [3478, 368, 109586, 35433, 2, 77, 132619, 3478, 368, 109586, 35433, 2, 2175, 23714, 73173, 144252, 2, 77, 132619, 3478] | |
# fmt: on | |
MEAN_LOGITS_GPU_1 = -1.823902130126953e-05 | |
MEAN_LOGITS_GPU_2 = 1.9431114196777344e-05 | |
tensor_ids = torch.LongTensor([EXAMPLE_IDS]).to(torch_device) | |
with torch.no_grad(): | |
output = model(tensor_ids).logits | |
output_gpu_1, output_gpu_2 = output.split(125440, dim=-1) | |
if cuda_available: | |
self.assertAlmostEqual(output_gpu_1.mean().item(), MEAN_LOGITS_GPU_1, places=6) | |
self.assertAlmostEqual(output_gpu_2.mean().item(), MEAN_LOGITS_GPU_2, places=6) | |
else: | |
self.assertAlmostEqual(output_gpu_1.mean().item(), MEAN_LOGITS_GPU_1, places=6) # 1e-06 precision!! | |
self.assertAlmostEqual(output_gpu_2.mean().item(), MEAN_LOGITS_GPU_2, places=6) | |