Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from datasets import load_dataset | |
from transformers import BloomTokenizerFast | |
from transformers.testing_utils import require_tokenizers | |
from ...test_tokenization_common import TokenizerTesterMixin | |
class BloomTokenizationTest(TokenizerTesterMixin, unittest.TestCase): | |
slow_tokenizer_class = None | |
rust_tokenizer_class = BloomTokenizerFast | |
tokenizer_class = BloomTokenizerFast | |
test_rust_tokenizer = True | |
test_slow_tokenizer = False | |
from_pretrained_vocab_key = "tokenizer_file" | |
special_tokens_map = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} | |
def setUp(self): | |
super().setUp() | |
tokenizer = BloomTokenizerFast.from_pretrained("bigscience/tokenizer") | |
tokenizer.save_pretrained(self.tmpdirname) | |
def get_rust_tokenizer(self, **kwargs): | |
kwargs.update(self.special_tokens_map) | |
return BloomTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) | |
def test_encodings_from_sample_data(self): | |
""" | |
Assert that the created tokens are the same than the hard-coded ones | |
""" | |
tokenizer = self.get_rust_tokenizer() | |
INPUT_SENTENCES = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] | |
TARGET_TOKENS = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] | |
computed_tokens = tokenizer.batch_encode_plus(INPUT_SENTENCES)["input_ids"] | |
self.assertListEqual(TARGET_TOKENS, computed_tokens) | |
decoded_tokens = tokenizer.batch_decode(computed_tokens) | |
self.assertListEqual(decoded_tokens, INPUT_SENTENCES) | |
def test_padding(self, max_length=6): | |
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: | |
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): | |
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) | |
# tokenizer_r.pad_token = None # Hotfixing padding = None | |
# Simple input | |
s = "This is a simple input" | |
s2 = ["This is a simple input 1", "This is a simple input 2"] | |
p = ("This is a simple input", "This is a pair") | |
p2 = [ | |
("This is a simple input 1", "This is a simple input 2"), | |
("This is a simple pair 1", "This is a simple pair 2"), | |
] | |
# Simple input tests | |
try: | |
tokenizer_r.encode(s, max_length=max_length) | |
tokenizer_r.encode_plus(s, max_length=max_length) | |
tokenizer_r.batch_encode_plus(s2, max_length=max_length) | |
tokenizer_r.encode(p, max_length=max_length) | |
tokenizer_r.batch_encode_plus(p2, max_length=max_length) | |
except ValueError: | |
self.fail("Bloom Tokenizer should be able to deal with padding") | |
tokenizer_r.pad_token = None # Hotfixing padding = None | |
self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length") | |
# Simple input | |
self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length") | |
# Simple input | |
self.assertRaises( | |
ValueError, | |
tokenizer_r.batch_encode_plus, | |
s2, | |
max_length=max_length, | |
padding="max_length", | |
) | |
# Pair input | |
self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length") | |
# Pair input | |
self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length") | |
# Pair input | |
self.assertRaises( | |
ValueError, | |
tokenizer_r.batch_encode_plus, | |
p2, | |
max_length=max_length, | |
padding="max_length", | |
) | |
def test_encodings_from_xnli_dataset(self): | |
""" | |
Tests the tokenizer downloaded from here: | |
- https://huggingface.co/bigscience/tokenizer/ | |
""" | |
tokenizer = self.get_rust_tokenizer() | |
ds = load_dataset("xnli", "all_languages", split="test", streaming=True) | |
sample_data = next(iter(ds))["premise"] # pick up one data | |
input_text = list(sample_data.values()) | |
output_tokens = list(map(tokenizer.encode, input_text)) | |
predicted_text = [tokenizer.decode(x, clean_up_tokenization_spaces=False) for x in output_tokens] | |
self.assertListEqual(predicted_text, input_text) | |
def test_pretrained_model_lists(self): | |
# The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have | |
# any sequence length constraints. This test of the parent class will fail since it relies on the | |
# maximum sequence length of the positoonal embeddings. | |
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1) | |
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1) | |