compositional_test / transformers /tests /models /bloom /test_tokenization_bloom.py
chendl's picture
add requirements
a1d409e
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class BloomTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
slow_tokenizer_class = None
rust_tokenizer_class = BloomTokenizerFast
tokenizer_class = BloomTokenizerFast
test_rust_tokenizer = True
test_slow_tokenizer = False
from_pretrained_vocab_key = "tokenizer_file"
special_tokens_map = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
def setUp(self):
super().setUp()
tokenizer = BloomTokenizerFast.from_pretrained("bigscience/tokenizer")
tokenizer.save_pretrained(self.tmpdirname)
def get_rust_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return BloomTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
def test_encodings_from_sample_data(self):
"""
Assert that the created tokens are the same than the hard-coded ones
"""
tokenizer = self.get_rust_tokenizer()
INPUT_SENTENCES = ["The quick brown fox</s>", "jumps over the lazy dog</s>"]
TARGET_TOKENS = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]]
computed_tokens = tokenizer.batch_encode_plus(INPUT_SENTENCES)["input_ids"]
self.assertListEqual(TARGET_TOKENS, computed_tokens)
decoded_tokens = tokenizer.batch_decode(computed_tokens)
self.assertListEqual(decoded_tokens, INPUT_SENTENCES)
def test_padding(self, max_length=6):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
s = "This is a simple input"
s2 = ["This is a simple input 1", "This is a simple input 2"]
p = ("This is a simple input", "This is a pair")
p2 = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
try:
tokenizer_r.encode(s, max_length=max_length)
tokenizer_r.encode_plus(s, max_length=max_length)
tokenizer_r.batch_encode_plus(s2, max_length=max_length)
tokenizer_r.encode(p, max_length=max_length)
tokenizer_r.batch_encode_plus(p2, max_length=max_length)
except ValueError:
self.fail("Bloom Tokenizer should be able to deal with padding")
tokenizer_r.pad_token = None # Hotfixing padding = None
self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")
# Simple input
self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")
# Simple input
self.assertRaises(
ValueError,
tokenizer_r.batch_encode_plus,
s2,
max_length=max_length,
padding="max_length",
)
# Pair input
self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")
# Pair input
self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")
# Pair input
self.assertRaises(
ValueError,
tokenizer_r.batch_encode_plus,
p2,
max_length=max_length,
padding="max_length",
)
def test_encodings_from_xnli_dataset(self):
"""
Tests the tokenizer downloaded from here:
- https://huggingface.co/bigscience/tokenizer/
"""
tokenizer = self.get_rust_tokenizer()
ds = load_dataset("xnli", "all_languages", split="test", streaming=True)
sample_data = next(iter(ds))["premise"] # pick up one data
input_text = list(sample_data.values())
output_tokens = list(map(tokenizer.encode, input_text))
predicted_text = [tokenizer.decode(x, clean_up_tokenization_spaces=False) for x in output_tokens]
self.assertListEqual(predicted_text, input_text)
def test_pretrained_model_lists(self):
# The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have
# any sequence length constraints. This test of the parent class will fail since it relies on the
# maximum sequence length of the positoonal embeddings.
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1)
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1)