Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2020 Google T5 Authors and HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import re | |
import shutil | |
import tempfile | |
import unittest | |
from typing import Tuple | |
from transformers import AddedToken, BatchEncoding, ByT5Tokenizer | |
from transformers.utils import cached_property, is_tf_available, is_torch_available | |
from ...test_tokenization_common import TokenizerTesterMixin | |
if is_torch_available(): | |
FRAMEWORK = "pt" | |
elif is_tf_available(): | |
FRAMEWORK = "tf" | |
else: | |
FRAMEWORK = "jax" | |
class ByT5TokenizationTest(TokenizerTesterMixin, unittest.TestCase): | |
tokenizer_class = ByT5Tokenizer | |
test_rust_tokenizer = False | |
def setUp(self): | |
super().setUp() | |
tokenizer = ByT5Tokenizer() | |
tokenizer.save_pretrained(self.tmpdirname) | |
def t5_base_tokenizer(self): | |
return ByT5Tokenizer.from_pretrained("google/byt5-small") | |
def get_tokenizer(self, **kwargs) -> ByT5Tokenizer: | |
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) | |
def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]: | |
# XXX The default common tokenizer tests assume that every ID is decodable on its own. | |
# This assumption is invalid for ByT5 because single bytes might not be | |
# valid utf-8 (byte 128 for instance). | |
# Here we're overriding the smallest possible method to provide | |
# a clean sequence without making the same assumption. | |
toks = [] | |
for i in range(len(tokenizer)): | |
try: | |
tok = tokenizer.decode([i], clean_up_tokenization_spaces=False) | |
except UnicodeDecodeError: | |
pass | |
toks.append((i, tok)) | |
toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks)) | |
toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], add_special_tokens=False), toks)) | |
if max_length is not None and len(toks) > max_length: | |
toks = toks[:max_length] | |
if min_length is not None and len(toks) < min_length and len(toks) > 0: | |
while len(toks) < min_length: | |
toks = toks + toks | |
# toks_str = [t[1] for t in toks] | |
toks_ids = [t[0] for t in toks] | |
# Ensure consistency | |
output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False) | |
if " " not in output_txt and len(toks_ids) > 1: | |
output_txt = ( | |
tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False) | |
+ " " | |
+ tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False) | |
) | |
if with_prefix_space: | |
output_txt = " " + output_txt | |
output_ids = tokenizer.encode(output_txt, add_special_tokens=False) | |
return output_txt, output_ids | |
def test_eos_treatment(self): | |
tokenizer = self.t5_base_tokenizer | |
batch_with_eos_added = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"]) | |
batch_without_eos_added = tokenizer(["hi", "I went to the gym", ""]) | |
self.assertListEqual(batch_with_eos_added["input_ids"], batch_without_eos_added["input_ids"]) | |
def test_multibytes_char(self): | |
tokenizer = self.t5_base_tokenizer | |
src_text = "Unicode €." | |
encoded = tokenizer(src_text) | |
encoded_ids = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] | |
self.assertEqual(encoded["input_ids"], encoded_ids) | |
# decoding | |
decoded = tokenizer.decode(encoded_ids) | |
self.assertEqual(decoded, "Unicode €.</s>") | |
encoded = tokenizer("e è é ê ë") | |
encoded_ids = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] | |
self.assertEqual(encoded["input_ids"], encoded_ids) | |
# decoding | |
decoded = tokenizer.decode(encoded_ids) | |
self.assertEqual(decoded, "e è é ê ë</s>") | |
# encode/decode, but with `encode` instead of `__call__` | |
self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë")), "e è é ê ë</s>") | |
def test_prepare_batch_integration(self): | |
tokenizer = self.t5_base_tokenizer | |
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] | |
# fmt: off | |
expected_src_tokens = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] | |
# fmt: on | |
batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK) | |
self.assertIsInstance(batch, BatchEncoding) | |
if FRAMEWORK != "jax": | |
result = list(batch.input_ids.numpy()[0]) | |
else: | |
result = list(batch.input_ids.tolist()[0]) | |
self.assertListEqual(expected_src_tokens, result) | |
self.assertEqual((2, 37), batch.input_ids.shape) | |
self.assertEqual((2, 37), batch.attention_mask.shape) | |
def test_empty_target_text(self): | |
tokenizer = self.t5_base_tokenizer | |
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."] | |
batch = tokenizer(src_text, padding=True, return_tensors=FRAMEWORK) | |
# check if input_ids are returned and no decoder_input_ids | |
self.assertIn("input_ids", batch) | |
self.assertIn("attention_mask", batch) | |
self.assertNotIn("decoder_input_ids", batch) | |
self.assertNotIn("decoder_attention_mask", batch) | |
def test_max_length_integration(self): | |
tokenizer = self.t5_base_tokenizer | |
tgt_text = [ | |
"Summary of the text.", | |
"Another summary.", | |
] | |
targets = tokenizer( | |
text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors=FRAMEWORK | |
) | |
self.assertEqual(32, targets["input_ids"].shape[1]) | |
def test_eos_in_input(self): | |
tokenizer = self.t5_base_tokenizer | |
src_text = ["A long paragraph for summarization. </s>"] | |
tgt_text = ["Summary of the text. </s>"] | |
# fmt: off | |
expected_src_tokens = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] | |
expected_tgt_tokens = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] | |
# fmt: on | |
batch = tokenizer(src_text, text_target=tgt_text) | |
self.assertEqual(expected_src_tokens, batch["input_ids"][0]) | |
self.assertEqual(expected_tgt_tokens, batch["labels"][0]) | |
# cannot use default save_and_load_tokenzier test method because tokenzier has no vocab | |
def test_save_and_load_tokenizer(self): | |
# safety check on max_len default value so we are sure the test works | |
tokenizers = self.get_tokenizers() | |
for tokenizer in tokenizers: | |
with self.subTest(f"{tokenizer.__class__.__name__}"): | |
self.assertNotEqual(tokenizer.model_max_length, 42) | |
# Now let's start the test | |
tokenizers = self.get_tokenizers() | |
for tokenizer in tokenizers: | |
with self.subTest(f"{tokenizer.__class__.__name__}"): | |
# Isolate this from the other tests because we save additional tokens/etc | |
tmpdirname = tempfile.mkdtemp() | |
sample_text = " He is very happy, UNwant\u00E9d,running" | |
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) | |
tokenizer.save_pretrained(tmpdirname) | |
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) | |
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) | |
self.assertListEqual(before_tokens, after_tokens) | |
shutil.rmtree(tmpdirname) | |
tokenizers = self.get_tokenizers(model_max_length=42) | |
for tokenizer in tokenizers: | |
with self.subTest(f"{tokenizer.__class__.__name__}"): | |
# Isolate this from the other tests because we save additional tokens/etc | |
tmpdirname = tempfile.mkdtemp() | |
sample_text = " He is very happy, UNwant\u00E9d,running" | |
tokenizer.add_tokens(["bim", "bambam"]) | |
additional_special_tokens = tokenizer.additional_special_tokens | |
additional_special_tokens.append("new_additional_special_token") | |
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) | |
before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) | |
tokenizer.save_pretrained(tmpdirname) | |
after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) | |
after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) | |
self.assertListEqual(before_tokens, after_tokens) | |
self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens) | |
self.assertEqual(after_tokenizer.model_max_length, 42) | |
tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) | |
self.assertEqual(tokenizer.model_max_length, 43) | |
shutil.rmtree(tmpdirname) | |
# There is a conflict between the default value of extra_ids and adding a new special token through additional_special_tokens | |
# We need to add the extra_ids in the list of the arg additional_special_tokens | |
def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): | |
tokenizer_list = [] | |
if self.test_slow_tokenizer: | |
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) | |
if self.test_rust_tokenizer: | |
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) | |
for tokenizer_class, tokenizer_utils in tokenizer_list: | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
tokenizer_utils.save_pretrained(tmp_dir) | |
with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file: | |
special_tokens_map = json.load(json_file) | |
with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file: | |
tokenizer_config = json.load(json_file) | |
added_tokens_extra_ids = [f"<extra_id_{i}>" for i in range(125)] | |
special_tokens_map["additional_special_tokens"] = added_tokens_extra_ids + [ | |
"an_additional_special_token" | |
] | |
tokenizer_config["additional_special_tokens"] = added_tokens_extra_ids + [ | |
"an_additional_special_token" | |
] | |
with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: | |
json.dump(special_tokens_map, outfile) | |
with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: | |
json.dump(tokenizer_config, outfile) | |
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes | |
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and | |
# "special_tokens_map.json" files | |
tokenizer_without_change_in_init = tokenizer_class.from_pretrained( | |
tmp_dir, | |
) | |
self.assertIn( | |
"an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens | |
) | |
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab | |
self.assertEqual( | |
["an_additional_special_token"], | |
tokenizer_without_change_in_init.convert_ids_to_tokens( | |
tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"]) | |
), | |
) | |
# Now we test that we can change the value of additional_special_tokens in the from_pretrained | |
new_added_tokens = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token", lstrip=True)] | |
tokenizer = tokenizer_class.from_pretrained( | |
tmp_dir, | |
additional_special_tokens=new_added_tokens, | |
) | |
self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens) | |
self.assertEqual( | |
["a_new_additional_special_token"], | |
tokenizer.convert_ids_to_tokens( | |
tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"]) | |
), | |
) | |
def test_decode_single_bytes(self): | |
tokenizer_list = [] | |
if self.test_slow_tokenizer: | |
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) | |
if self.test_rust_tokenizer: | |
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) | |
for tokenizer_class, tokenizer_utils in tokenizer_list: | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
tokenizer_utils.save_pretrained(tmp_dir) | |
tokenizer = tokenizer_class.from_pretrained(tmp_dir) | |
self.assertTrue(tokenizer.decode([255]) == "") | |
# tokenizer can be instantiated without any pretrained files, so no need for pretrained tokenizer list | |
def test_pretrained_model_lists(self): | |
pass | |
# tokenizer does not have vocabulary | |
def test_get_vocab(self): | |
pass | |
# inputs cannot be pretokenized since ids depend on whole input string and not just on single characters | |
def test_pretokenized_inputs(self): | |
pass | |
# tests all ids in vocab => vocab doesn't exist so unnecessary to test | |
def test_conversion_reversible(self): | |
pass | |
def test_convert_tokens_to_string_format(self): | |
# The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings | |
# and special added tokens as tokens | |
tokenizers = self.get_tokenizers(fast=True, do_lower_case=True) | |
for tokenizer in tokenizers: | |
with self.subTest(f"{tokenizer.__class__.__name__}"): | |
tokens = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] | |
string = tokenizer.convert_tokens_to_string(tokens) | |
self.assertIsInstance(string, str) | |
# We need a different implementation of the test of the same name defined in TokenizerTesterMixin because this tokenizer | |
# doesn't have a vocab | |
def test_tokenizers_common_ids_setters(self): | |
tokenizers = self.get_tokenizers() | |
for tokenizer in tokenizers: | |
with self.subTest(f"{tokenizer.__class__.__name__}"): | |
attributes_list = [ | |
"bos_token", | |
"eos_token", | |
"unk_token", | |
"sep_token", | |
"pad_token", | |
"cls_token", | |
"mask_token", | |
] | |
token_id_to_test_setters = 0 | |
token_to_test_setters = tokenizer.convert_ids_to_tokens( | |
token_id_to_test_setters, skip_special_tokens=False | |
) | |
for attr in attributes_list: | |
setattr(tokenizer, attr + "_id", None) | |
self.assertEqual(getattr(tokenizer, attr), None) | |
self.assertEqual(getattr(tokenizer, attr + "_id"), None) | |
setattr(tokenizer, attr + "_id", token_id_to_test_setters) | |
self.assertEqual(getattr(tokenizer, attr), token_to_test_setters) | |
self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters) | |
setattr(tokenizer, "additional_special_tokens_ids", []) | |
self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), []) | |
self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), []) | |
setattr(tokenizer, "additional_special_tokens_ids", [token_id_to_test_setters]) | |
self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [token_to_test_setters]) | |
self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [token_id_to_test_setters]) | |