Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch ConvNextV2 model. """ | |
import inspect | |
import unittest | |
from transformers import ConvNextV2Config | |
from transformers.models.auto import get_values | |
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES | |
from transformers.testing_utils import require_torch, require_vision, slow, torch_device | |
from transformers.utils import cached_property, is_torch_available, is_vision_available | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ConvNextV2Backbone, ConvNextV2ForImageClassification, ConvNextV2Model | |
from transformers.models.convnextv2.modeling_convnextv2 import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
from PIL import Image | |
from transformers import AutoImageProcessor | |
class ConvNextV2ModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
image_size=32, | |
num_channels=3, | |
num_stages=4, | |
hidden_sizes=[10, 20, 30, 40], | |
depths=[2, 2, 3, 2], | |
is_training=True, | |
use_labels=True, | |
intermediate_size=37, | |
hidden_act="gelu", | |
num_labels=10, | |
initializer_range=0.02, | |
out_features=["stage2", "stage3", "stage4"], | |
out_indices=[2, 3, 4], | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.num_channels = num_channels | |
self.num_stages = num_stages | |
self.hidden_sizes = hidden_sizes | |
self.depths = depths | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.num_labels = num_labels | |
self.initializer_range = initializer_range | |
self.out_features = out_features | |
self.out_indices = out_indices | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
labels = None | |
if self.use_labels: | |
labels = ids_tensor([self.batch_size], self.num_labels) | |
config = self.get_config() | |
return config, pixel_values, labels | |
def get_config(self): | |
return ConvNextV2Config( | |
num_channels=self.num_channels, | |
hidden_sizes=self.hidden_sizes, | |
depths=self.depths, | |
num_stages=self.num_stages, | |
hidden_act=self.hidden_act, | |
is_decoder=False, | |
initializer_range=self.initializer_range, | |
out_features=self.out_features, | |
out_indices=self.out_indices, | |
num_labels=self.num_labels, | |
) | |
def create_and_check_model(self, config, pixel_values, labels): | |
model = ConvNextV2Model(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
# expected last hidden states: B, C, H // 32, W // 32 | |
self.parent.assertEqual( | |
result.last_hidden_state.shape, | |
(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), | |
) | |
def create_and_check_for_image_classification(self, config, pixel_values, labels): | |
model = ConvNextV2ForImageClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values, labels=labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_backbone(self, config, pixel_values, labels): | |
model = ConvNextV2Backbone(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
# verify hidden states | |
self.parent.assertEqual(len(result.feature_maps), len(config.out_features)) | |
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4]) | |
# verify channels | |
self.parent.assertEqual(len(model.channels), len(config.out_features)) | |
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:]) | |
# verify backbone works with out_features=None | |
config.out_features = None | |
model = ConvNextV2Backbone(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
# verify feature maps | |
self.parent.assertEqual(len(result.feature_maps), 1) | |
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1]) | |
# verify channels | |
self.parent.assertEqual(len(model.channels), 1) | |
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]]) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values, labels = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
def prepare_config_and_inputs_with_labels(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values, labels = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values, "labels": labels} | |
return config, inputs_dict | |
class ConvNextV2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
""" | |
Here we also overwrite some of the tests of test_modeling_common.py, as ConvNextV2 does not use input_ids, inputs_embeds, | |
attention_mask and seq_length. | |
""" | |
all_model_classes = ( | |
( | |
ConvNextV2Model, | |
ConvNextV2ForImageClassification, | |
ConvNextV2Backbone, | |
) | |
if is_torch_available() | |
else () | |
) | |
pipeline_model_mapping = ( | |
{"feature-extraction": ConvNextV2Model, "image-classification": ConvNextV2ForImageClassification} | |
if is_torch_available() | |
else {} | |
) | |
fx_compatible = False | |
test_pruning = False | |
test_resize_embeddings = False | |
test_head_masking = False | |
has_attentions = False | |
def setUp(self): | |
self.model_tester = ConvNextV2ModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=ConvNextV2Config, has_text_modality=False, hidden_size=37) | |
def test_config(self): | |
self.create_and_test_config_common_properties() | |
self.config_tester.create_and_test_config_to_json_string() | |
self.config_tester.create_and_test_config_to_json_file() | |
self.config_tester.create_and_test_config_from_and_save_pretrained() | |
self.config_tester.create_and_test_config_with_num_labels() | |
self.config_tester.check_config_can_be_init_without_params() | |
self.config_tester.check_config_arguments_init() | |
def create_and_test_config_common_properties(self): | |
return | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
def test_feed_forward_chunking(self): | |
pass | |
def test_training(self): | |
if not self.model_tester.is_training: | |
return | |
for model_class in self.all_model_classes: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_with_labels() | |
config.return_dict = True | |
if model_class.__name__ in [ | |
*get_values(MODEL_MAPPING_NAMES), | |
*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES), | |
]: | |
continue | |
model = model_class(config) | |
model.to(torch_device) | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
loss = model(**inputs).loss | |
loss.backward() | |
def test_training_gradient_checkpointing(self): | |
if not self.model_tester.is_training: | |
return | |
for model_class in self.all_model_classes: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_with_labels() | |
config.use_cache = False | |
config.return_dict = True | |
if ( | |
model_class.__name__ | |
in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] | |
or not model_class.supports_gradient_checkpointing | |
): | |
continue | |
model = model_class(config) | |
model.to(torch_device) | |
model.gradient_checkpointing_enable() | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
loss = model(**inputs).loss | |
loss.backward() | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states | |
expected_num_stages = self.model_tester.num_stages | |
self.assertEqual(len(hidden_states), expected_num_stages + 1) | |
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[self.model_tester.image_size // 4, self.model_tester.image_size // 4], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_for_image_classification(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_for_image_classification(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = ConvNextV2Model.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class ConvNextV2ModelIntegrationTest(unittest.TestCase): | |
def default_image_processor(self): | |
return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224") if is_vision_available() else None | |
def test_inference_image_classification_head(self): | |
model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224").to(torch_device) | |
preprocessor = self.default_image_processor | |
image = prepare_img() | |
inputs = preprocessor(images=image, return_tensors="pt").to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# verify the logits | |
expected_shape = torch.Size((1, 1000)) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice = torch.tensor([-0.3083, -0.3040, -0.4344]).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) | |