chendl's picture
add requirements
a1d409e
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class OptimizationFTest(unittest.TestCase):
def assertListAlmostEqual(self, list1, list2, tol):
self.assertEqual(len(list1), len(list2))
for a, b in zip(list1, list2):
self.assertAlmostEqual(a, b, delta=tol)
def testGradientAccumulator(self):
accumulator = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0])])
accumulator([tf.constant([-2.0, 1.0])])
accumulator([tf.constant([-1.0, 2.0])])
with self.assertRaises(ValueError):
accumulator([tf.constant([1.0, 1.0]), tf.constant([2.0, 2.0])])
self.assertEqual(accumulator.step, 3)
self.assertEqual(len(accumulator.gradients), 1)
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [-2.0, 5.0], tol=1e-2)
accumulator.reset()
self.assertEqual(accumulator.step, 0)
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist(), [0.0, 0.0], tol=1e-2)
def testGradientAccumulatorDistributionStrategy(self):
context._context = None
ops.enable_eager_execution_internal()
physical_devices = tf.config.list_physical_devices("CPU")
if len(physical_devices) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0], [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()]
)
devices = tf.config.list_logical_devices(device_type="CPU")
strategy = tf.distribute.MirroredStrategy(devices=devices[:2])
with strategy.scope():
accumulator = GradientAccumulator()
variable = tf.Variable([4.0, 3.0])
optimizer, _ = create_optimizer(5e-5, 10, 5)
gradient_placeholder = tf.Variable([0.0, 0.0], trainable=False)
def accumulate_on_replica(gradient):
accumulator([gradient])
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients, [variable])))
@tf.function
def accumulate(grad1, grad2):
with strategy.scope():
local_variables = strategy.experimental_local_results(gradient_placeholder)
local_variables[0].assign(grad1)
local_variables[1].assign(grad2)
strategy.run(accumulate_on_replica, args=(gradient_placeholder,))
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(apply_on_replica)
def _check_local_values(grad1, grad2):
values = strategy.experimental_local_results(accumulator._gradients[0])
self.assertListAlmostEqual(values[0].value(), grad1, tol=1e-2)
self.assertListAlmostEqual(values[1].value(), grad2, tol=1e-2)
accumulate([1.0, 2.0], [-1.0, 1.0])
accumulate([3.0, -1.0], [-1.0, -1.0])
accumulate([-2.0, 2.0], [3.0, -2.0])
self.assertEqual(accumulator.step, 3)
_check_local_values([2.0, 3.0], [1.0, -2.0])
apply_grad()
self.assertListAlmostEqual(variable.value(), [4.0, 3.0], tol=1e-2)
accumulator.reset()
self.assertEqual(accumulator.step, 0)
_check_local_values([0.0, 0.0], [0.0, 0.0])