Spaces:
Runtime error
Runtime error
update cap
Browse files- app.py +1 -1
- multimodal/open_flamingo/chat/conversation.py +54 -50
- multimodal/open_flamingo/eval/task/caption.py +142 -8
app.py
CHANGED
@@ -248,7 +248,7 @@ def gradio_ask(user_message, chatbot, chat_state,radio):
|
|
248 |
|
249 |
|
250 |
def gradio_answer(chatbot, chat_state, img_list, radio, text,num_beams, temperature):
|
251 |
-
image
|
252 |
llm_message,image = \
|
253 |
chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=1, temperature=temperature,
|
254 |
max_length=2000,radio = radio,text_input = text)
|
|
|
248 |
|
249 |
|
250 |
def gradio_answer(chatbot, chat_state, img_list, radio, text,num_beams, temperature):
|
251 |
+
image = None
|
252 |
llm_message,image = \
|
253 |
chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=300, num_beams=1, temperature=temperature,
|
254 |
max_length=2000,radio = radio,text_input = text)
|
multimodal/open_flamingo/chat/conversation.py
CHANGED
@@ -19,6 +19,7 @@ import gradio as gr
|
|
19 |
from huggingface_hub import hf_hub_download, login
|
20 |
|
21 |
from open_flamingo.src.factory import create_model_and_transforms
|
|
|
22 |
|
23 |
class SeparatorStyle(Enum):
|
24 |
"""Different separator style."""
|
@@ -403,56 +404,59 @@ class Chat:
|
|
403 |
image_start_index_list = [[x] for x in image_start_index_list]
|
404 |
image_nums = [1] * len(input_ids)
|
405 |
added_bbox_list = []
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
|
|
|
|
|
|
456 |
|
457 |
return output_text, out_image
|
458 |
|
|
|
19 |
from huggingface_hub import hf_hub_download, login
|
20 |
|
21 |
from open_flamingo.src.factory import create_model_and_transforms
|
22 |
+
from open_flamingo.eval.task.caption import captioner
|
23 |
|
24 |
class SeparatorStyle(Enum):
|
25 |
"""Different separator style."""
|
|
|
404 |
image_start_index_list = [[x] for x in image_start_index_list]
|
405 |
image_nums = [1] * len(input_ids)
|
406 |
added_bbox_list = []
|
407 |
+
if radio in ["Cap"]:
|
408 |
+
output_text, out_image = captioner(self.model,self.tokenizer,image_ori,batch_images,input_ids,attention_mask,image_start_index_list,image_nums,added_bbox_list)
|
409 |
+
else:
|
410 |
+
with torch.inference_mode():
|
411 |
+
text_outputs = self.model.generate(
|
412 |
+
batch_images,
|
413 |
+
input_ids,
|
414 |
+
attention_mask=attention_mask,
|
415 |
+
max_new_tokens=20,
|
416 |
+
# min_new_tokens=8,
|
417 |
+
num_beams=1,
|
418 |
+
# length_penalty=0,
|
419 |
+
image_start_index_list=image_start_index_list,
|
420 |
+
image_nums=image_nums,
|
421 |
+
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
|
422 |
+
)
|
423 |
+
# and torch.cuda.amp.autocast(dtype=torch.float16)
|
424 |
+
with torch.no_grad():
|
425 |
+
outputs = self.model(
|
426 |
+
vision_x=batch_images,
|
427 |
+
lang_x=input_ids,
|
428 |
+
attention_mask=attention_mask,
|
429 |
+
image_nums=image_nums,
|
430 |
+
image_start_index_list=image_start_index_list,
|
431 |
+
added_bbox_list=None,
|
432 |
+
add_box=False,
|
433 |
+
)
|
434 |
+
boxes = outputs["boxes"]
|
435 |
+
scores = outputs["scores"]
|
436 |
+
if len(scores) > 0:
|
437 |
+
box = boxes[scores.argmax()] / 224
|
438 |
+
print(f"{box}")
|
439 |
+
out_image = None
|
440 |
+
|
441 |
+
if len(boxes)>0:
|
442 |
+
width, height = image_ori.size
|
443 |
+
open_cv_image = np.array(image_ori)
|
444 |
+
# Convert RGB to BGR
|
445 |
+
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
446 |
+
box = box * [width, height, width, height]
|
447 |
+
# for box in boxes:
|
448 |
+
open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (255, 0, 0), 2)
|
449 |
+
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
|
450 |
+
|
451 |
+
|
452 |
+
# output_token = outputs[0, input_ids.shape[1]:]
|
453 |
+
# output_text = tokenizer.decode(output_token, skip_special_tokens=True).strip()
|
454 |
+
# conv[-1]["value"] = output_text
|
455 |
+
# # conv.messages[-1][1] = output_text
|
456 |
+
# print(
|
457 |
+
# f"### Assistant: {tokenizer.decode(outputs[0, input_ids.shape[1]:], skip_special_tokens=True).strip()}")
|
458 |
+
output_text = self.tokenizer.decode(text_outputs[0])
|
459 |
+
output_text = re.findall(r'Assistant:(.+)', output_text)[-1]
|
460 |
|
461 |
return output_text, out_image
|
462 |
|
multimodal/open_flamingo/eval/task/caption.py
CHANGED
@@ -7,7 +7,7 @@ import json
|
|
7 |
import time
|
8 |
import os
|
9 |
from transformers import LogitsProcessor, MinNewTokensLengthLogitsProcessor, ForcedEOSTokenLogitsProcessor
|
10 |
-
|
11 |
|
12 |
class VisualLogitsProcessor(LogitsProcessor):
|
13 |
def __init__(self, tokenizer):
|
@@ -51,6 +51,136 @@ def prepare_batch_images(batch, image_processor):
|
|
51 |
return batch_images
|
52 |
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def evaluate_coco_flickr(
|
55 |
model,
|
56 |
tokenizer,
|
@@ -94,6 +224,7 @@ def evaluate_coco_flickr(
|
|
94 |
if ii % world_size != rank:
|
95 |
continue
|
96 |
cnt += len(batch)
|
|
|
97 |
batch_images = prepare_batch_images(
|
98 |
batch=batch,
|
99 |
image_processor=image_processor,
|
@@ -194,13 +325,14 @@ def evaluate_coco_flickr(
|
|
194 |
if debug:
|
195 |
print("after inserting visual---->", prompt)
|
196 |
else:
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
204 |
pre_box = boxes[scores.argmax()]
|
205 |
added_bbox_list += [torch.tensor(pre_box).unsqueeze(0).cuda() / 224]
|
206 |
prompt = prompt[:-len(tokenizer.eos_token)]
|
@@ -225,6 +357,8 @@ def evaluate_coco_flickr(
|
|
225 |
predictions[int(sample["image_id"])] = {
|
226 |
"caption": new_predictions[i],
|
227 |
}
|
|
|
|
|
228 |
results_path = (
|
229 |
f"flickrresults_{lang_encoder_name}_{rank}_{id}.json"
|
230 |
if is_flickr
|
|
|
7 |
import time
|
8 |
import os
|
9 |
from transformers import LogitsProcessor, MinNewTokensLengthLogitsProcessor, ForcedEOSTokenLogitsProcessor
|
10 |
+
from PIL import Image
|
11 |
|
12 |
class VisualLogitsProcessor(LogitsProcessor):
|
13 |
def __init__(self, tokenizer):
|
|
|
51 |
return batch_images
|
52 |
|
53 |
|
54 |
+
def captioner(
|
55 |
+
model,tokenizer,image_ori,batch_images,input_ids,attention_mask,image_start_index_list,image_nums,added_bbox_list,debug=False):
|
56 |
+
"""Evaluate a model on COCO dataset.
|
57 |
+
Returns:
|
58 |
+
float: CIDEr score
|
59 |
+
|
60 |
+
"""
|
61 |
+
visual_logits_processor = VisualLogitsProcessor(tokenizer)
|
62 |
+
model.eval()
|
63 |
+
# model.eval().cuda()
|
64 |
+
lang_encoder_name = model.lang_encoder.__class__.__name__.lower()
|
65 |
+
media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1]
|
66 |
+
endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1]
|
67 |
+
pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1]
|
68 |
+
bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1]
|
69 |
+
previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1]
|
70 |
+
visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1]
|
71 |
+
box_token = "<|#box#|>"
|
72 |
+
prebox_token = "<|#prebox#|>"
|
73 |
+
endofobject_token = "<|#endofobject#|>"
|
74 |
+
object_token = "<|#object#|>"
|
75 |
+
ori_prompt_length = len(input_ids[0])
|
76 |
+
have_prebox = False
|
77 |
+
while True:
|
78 |
+
batch_images = batch_images
|
79 |
+
input_ids = input_ids
|
80 |
+
attention_mask = attention_mask
|
81 |
+
image_start_index_list = image_start_index_list
|
82 |
+
image_nums = image_nums
|
83 |
+
if debug:
|
84 |
+
print("input--->",tokenizer.decode(input_ids[0]))
|
85 |
+
p1 = MinNewTokensLengthLogitsProcessor(
|
86 |
+
prompt_length_to_skip=input_ids.shape[-1],
|
87 |
+
min_new_tokens=5,
|
88 |
+
eos_token_id=bos_token_id,
|
89 |
+
)
|
90 |
+
with torch.inference_mode():
|
91 |
+
outputs = model.generate(
|
92 |
+
batch_images,
|
93 |
+
input_ids,
|
94 |
+
attention_mask=attention_mask,
|
95 |
+
max_new_tokens=20,
|
96 |
+
# min_new_tokens=8,
|
97 |
+
num_beams=1,
|
98 |
+
# length_penalty=0,
|
99 |
+
image_start_index_list=image_start_index_list,
|
100 |
+
image_nums=image_nums,
|
101 |
+
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
|
102 |
+
logits_processor_list=[p1, visual_logits_processor],
|
103 |
+
)
|
104 |
+
if debug:
|
105 |
+
print("outputs--->",tokenizer.decode(outputs[0]))
|
106 |
+
if outputs[0, -2] in [previsual_token_id, visual_token_id] and outputs[0, -1] == bos_token_id:
|
107 |
+
prompt = tokenizer.decode(outputs.clone()[0])
|
108 |
+
is_visual = (outputs[0, -2] == visual_token_id)
|
109 |
+
batch_text = tokenizer.batch_decode(outputs[:, :-1])
|
110 |
+
encodings = tokenizer(
|
111 |
+
batch_text,
|
112 |
+
padding="longest",
|
113 |
+
truncation=True,
|
114 |
+
return_tensors="pt",
|
115 |
+
max_length=2000,
|
116 |
+
)
|
117 |
+
input_ids = encodings["input_ids"]
|
118 |
+
attention_mask = encodings["attention_mask"]
|
119 |
+
image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist()
|
120 |
+
image_start_index_list = [[x] for x in image_start_index_list]
|
121 |
+
image_nums = [1] * len(input_ids)
|
122 |
+
if debug:
|
123 |
+
print("get the visual bbox--->",tokenizer.decode(input_ids[0]))
|
124 |
+
with torch.no_grad():
|
125 |
+
outputs = model(
|
126 |
+
vision_x=batch_images,
|
127 |
+
lang_x=input_ids,
|
128 |
+
attention_mask=attention_mask,
|
129 |
+
image_nums=image_nums,
|
130 |
+
image_start_index_list=image_start_index_list,
|
131 |
+
added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None,
|
132 |
+
add_box=added_bbox_list is not None and len(added_bbox_list) != 0,
|
133 |
+
)
|
134 |
+
boxes = outputs["boxes"]
|
135 |
+
scores = outputs["scores"]
|
136 |
+
# if not model.valid:
|
137 |
+
# import pdb; pdb.set_trace()
|
138 |
+
if boxes is not None:
|
139 |
+
if is_visual:
|
140 |
+
if have_prebox:
|
141 |
+
added_bbox_list.pop()
|
142 |
+
prompt = prompt.replace("<|#previsual#|><|#prebox#|><|#object#|>", "")
|
143 |
+
have_prebox = False
|
144 |
+
if debug:
|
145 |
+
print("find previsual and remove it--->", prompt)
|
146 |
+
first_box = boxes[scores.argmax()]
|
147 |
+
added_bbox_list += [torch.tensor(first_box).unsqueeze(0) / 224]
|
148 |
+
prompt = prompt[:-len(tokenizer.eos_token)]
|
149 |
+
prompt += box_token + endofobject_token
|
150 |
+
if debug:
|
151 |
+
print("after inserting visual---->", prompt)
|
152 |
+
else:
|
153 |
+
import numpy as np
|
154 |
+
import cv2
|
155 |
+
open_cv_image = np.array(image_ori)
|
156 |
+
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
157 |
+
for i, pre_box in enumerate(boxes):
|
158 |
+
open_cv_image = cv2.rectangle(open_cv_image, pre_box[:2].astype(int), pre_box[2:].astype(int), (0, 255, 0), i+1)
|
159 |
+
out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB))
|
160 |
+
# exit()
|
161 |
+
pre_box = boxes[scores.argmax()]
|
162 |
+
added_bbox_list += [torch.tensor(pre_box).unsqueeze(0).cuda() / 224]
|
163 |
+
prompt = prompt[:-len(tokenizer.eos_token)]
|
164 |
+
prompt += prebox_token + object_token
|
165 |
+
have_prebox = True
|
166 |
+
if debug:
|
167 |
+
print("after inserting previsual---->", prompt)
|
168 |
+
else:
|
169 |
+
if debug:
|
170 |
+
import pdb;pdb.set_trace()
|
171 |
+
prompt = tokenizer.decode(outputs[0, :-2].clone()[0])
|
172 |
+
else:
|
173 |
+
break
|
174 |
+
outputs = outputs[:, ori_prompt_length:]
|
175 |
+
outputs = postprocess_captioning_generation(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]).replace('"', "")
|
176 |
+
# new_predictions = [
|
177 |
+
# postprocess_captioning_generation(out).replace('"', "")
|
178 |
+
# for out in tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
179 |
+
# ]
|
180 |
+
# import pdb; pdb.set_trace()
|
181 |
+
return outputs, out_image
|
182 |
+
|
183 |
+
|
184 |
def evaluate_coco_flickr(
|
185 |
model,
|
186 |
tokenizer,
|
|
|
224 |
if ii % world_size != rank:
|
225 |
continue
|
226 |
cnt += len(batch)
|
227 |
+
batch[0]["image"] = Image.open("/gpfs/u/home/LMCG/LMCGljnn/scratch/images/img3.jpg").resize((224, 224))
|
228 |
batch_images = prepare_batch_images(
|
229 |
batch=batch,
|
230 |
image_processor=image_processor,
|
|
|
325 |
if debug:
|
326 |
print("after inserting visual---->", prompt)
|
327 |
else:
|
328 |
+
import numpy as np
|
329 |
+
import cv2
|
330 |
+
open_cv_image = np.array(batch[0]["image"])
|
331 |
+
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
332 |
+
for i, pre_box in enumerate(boxes):
|
333 |
+
open_cv_image = cv2.rectangle(open_cv_image, pre_box[:2].astype(int), pre_box[2:].astype(int), (0, 255, 0), i+1)
|
334 |
+
cv2.imwrite("Atest.png", open_cv_image)
|
335 |
+
exit()
|
336 |
pre_box = boxes[scores.argmax()]
|
337 |
added_bbox_list += [torch.tensor(pre_box).unsqueeze(0).cuda() / 224]
|
338 |
prompt = prompt[:-len(tokenizer.eos_token)]
|
|
|
357 |
predictions[int(sample["image_id"])] = {
|
358 |
"caption": new_predictions[i],
|
359 |
}
|
360 |
+
print(new_predictions)
|
361 |
+
exit()
|
362 |
results_path = (
|
363 |
f"flickrresults_{lang_encoder_name}_{rank}_{id}.json"
|
364 |
if is_flickr
|