# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch CvT model. """ import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoFeatureExtractor class CvtConfigTester(ConfigTester): def create_and_test_config_common_properties(self): config = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(config, "embed_dim")) self.parent.assertTrue(hasattr(config, "num_heads")) class CvtModelTester: def __init__( self, parent, batch_size=13, image_size=64, num_channels=3, embed_dim=[16, 48, 96], num_heads=[1, 3, 6], depth=[1, 2, 10], patch_sizes=[7, 3, 3], patch_stride=[4, 2, 2], patch_padding=[2, 1, 1], stride_kv=[2, 2, 2], cls_token=[False, False, True], attention_drop_rate=[0.0, 0.0, 0.0], initializer_range=0.02, layer_norm_eps=1e-12, is_training=True, use_labels=True, num_labels=2, # Check ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_sizes = patch_sizes self.patch_stride = patch_stride self.patch_padding = patch_padding self.is_training = is_training self.use_labels = use_labels self.num_labels = num_labels self.num_channels = num_channels self.embed_dim = embed_dim self.num_heads = num_heads self.stride_kv = stride_kv self.depth = depth self.cls_token = cls_token self.attention_drop_rate = attention_drop_rate self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return CvtConfig( image_size=self.image_size, num_labels=self.num_labels, num_channels=self.num_channels, embed_dim=self.embed_dim, num_heads=self.num_heads, patch_sizes=self.patch_sizes, patch_padding=self.patch_padding, patch_stride=self.patch_stride, stride_kv=self.stride_kv, depth=self.depth, cls_token=self.cls_token, attention_drop_rate=self.attention_drop_rate, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, pixel_values, labels): model = CvtModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) image_size = (self.image_size, self.image_size) height, width = image_size[0], image_size[1] for i in range(len(self.depth)): height = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) width = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.num_labels model = CvtForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class CvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as Cvt does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (CvtModel, CvtForImageClassification) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) test_pruning = False test_torchscript = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = CvtModelTester(self) self.config_tester = ConfigTester(self, config_class=CvtConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="Cvt does not output attentions") def test_attention_outputs(self): pass @unittest.skip(reason="Cvt does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="Cvt does not support input and output embeddings") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = len(self.model_tester.depth) self.assertEqual(len(hidden_states), expected_num_layers) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]), [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = CvtModel.from_pretrained(model_name) self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class CvtModelIntegrationTest(unittest.TestCase): @cached_property def default_feature_extractor(self): return AutoFeatureExtractor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def test_inference_image_classification_head(self): model = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device) feature_extractor = self.default_feature_extractor image = prepare_img() inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([0.9285, 0.9015, -0.3150]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))