#!/usr/bin/env python3 # Copyright (c) Megvii Inc. All rights reserved. import os import random import cv2 import numpy as np __all__ = [ "mkdir", "nms", "multiclass_nms", "demo_postprocess", "random_color", "visualize_assign" ] def random_color(): return random.randint(0, 255), random.randint(0, 255), random.randint(0, 255) def visualize_assign(img, boxes, coords, match_results, save_name=None) -> np.ndarray: """visualize label assign result. Args: img: img to visualize boxes: gt boxes in xyxy format coords: coords of matched anchors match_results: match results of each gt box and coord. save_name: name of save image, if None, image will not be saved. Default: None. """ for box_id, box in enumerate(boxes): x1, y1, x2, y2 = box color = random_color() assign_coords = coords[match_results == box_id] if assign_coords.numel() == 0: # unmatched boxes are red color = (0, 0, 255) cv2.putText( img, "unmatched", (int(x1), int(y1) - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1 ) else: for coord in assign_coords: # draw assigned anchor cv2.circle(img, (int(coord[0]), int(coord[1])), 3, color, -1) cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) if save_name is not None: cv2.imwrite(save_name, img) return img def mkdir(path): if not os.path.exists(path): os.makedirs(path) def nms(boxes, scores, nms_thr): """Single class NMS implemented in Numpy.""" x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= nms_thr)[0] order = order[inds + 1] return keep def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True): """Multiclass NMS implemented in Numpy""" if class_agnostic: nms_method = multiclass_nms_class_agnostic else: nms_method = multiclass_nms_class_aware return nms_method(boxes, scores, nms_thr, score_thr) def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr): """Multiclass NMS implemented in Numpy. Class-aware version.""" final_dets = [] num_classes = scores.shape[1] for cls_ind in range(num_classes): cls_scores = scores[:, cls_ind] valid_score_mask = cls_scores > score_thr if valid_score_mask.sum() == 0: continue else: valid_scores = cls_scores[valid_score_mask] valid_boxes = boxes[valid_score_mask] keep = nms(valid_boxes, valid_scores, nms_thr) if len(keep) > 0: cls_inds = np.ones((len(keep), 1)) * cls_ind dets = np.concatenate( [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1 ) final_dets.append(dets) if len(final_dets) == 0: return None return np.concatenate(final_dets, 0) def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr): """Multiclass NMS implemented in Numpy. Class-agnostic version.""" cls_inds = scores.argmax(1) cls_scores = scores[np.arange(len(cls_inds)), cls_inds] valid_score_mask = cls_scores > score_thr if valid_score_mask.sum() == 0: return None valid_scores = cls_scores[valid_score_mask] valid_boxes = boxes[valid_score_mask] valid_cls_inds = cls_inds[valid_score_mask] keep = nms(valid_boxes, valid_scores, nms_thr) if keep: dets = np.concatenate( [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1 ) return dets def demo_postprocess(outputs, img_size, p6=False): grids = [] expanded_strides = [] strides = [8, 16, 32] if not p6 else [8, 16, 32, 64] hsizes = [img_size[0] // stride for stride in strides] wsizes = [img_size[1] // stride for stride in strides] for hsize, wsize, stride in zip(hsizes, wsizes, strides): xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize)) grid = np.stack((xv, yv), 2).reshape(1, -1, 2) grids.append(grid) shape = grid.shape[:2] expanded_strides.append(np.full((*shape, 1), stride)) grids = np.concatenate(grids, 1) expanded_strides = np.concatenate(expanded_strides, 1) outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides return outputs