# coding=utf-8 # Copyright 2021 Google AI and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class CanineTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = CanineTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() tokenizer = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def canine_tokenizer(self): return CanineTokenizer.from_pretrained("google/canine-s") def get_tokenizer(self, **kwargs) -> CanineTokenizer: tokenizer = self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs) tokenizer._unicode_vocab_size = 1024 return tokenizer @require_torch def test_prepare_batch_integration(self): tokenizer = self.canine_tokenizer src_text = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off expected_src_tokens = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on batch = tokenizer(src_text, padding=True, return_tensors="pt") self.assertIsInstance(batch, BatchEncoding) result = list(batch.input_ids.numpy()[0]) self.assertListEqual(expected_src_tokens, result) self.assertEqual((2, 39), batch.input_ids.shape) self.assertEqual((2, 39), batch.attention_mask.shape) @require_torch def test_encoding_keys(self): tokenizer = self.canine_tokenizer src_text = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] batch = tokenizer(src_text, padding=True, return_tensors="pt") # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids", batch) self.assertIn("attention_mask", batch) self.assertIn("token_type_ids", batch) @require_torch def test_max_length_integration(self): tokenizer = self.canine_tokenizer tgt_text = [ "What's the weater?", "It's about 25 degrees.", ] targets = tokenizer( text_target=tgt_text, max_length=32, padding="max_length", truncation=True, return_tensors="pt" ) self.assertEqual(32, targets["input_ids"].shape[1]) # cannot use default save_and_load_tokenzier test method because tokenzier has no vocab def test_save_and_load_tokenizer(self): # safety check on max_len default value so we are sure the test works tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertNotEqual(tokenizer.model_max_length, 42) # Now let's start the test tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) self.assertListEqual(before_tokens, after_tokens) shutil.rmtree(tmpdirname) tokenizers = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" additional_special_tokens = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: new_additional_special_token = chr(0xE007) additional_special_tokens.append(new_additional_special_token) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens}) before_tokens = tokenizer.encode(sample_text, add_special_tokens=False) tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False) self.assertListEqual(before_tokens, after_tokens) self.assertIn(new_additional_special_token, after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length, 42) tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43) self.assertEqual(tokenizer.model_max_length, 43) shutil.rmtree(tmpdirname) def test_add_special_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input_text, ids = self.get_clean_sequence(tokenizer) # a special token for Canine can be defined as follows: SPECIAL_TOKEN = 0xE005 special_token = chr(SPECIAL_TOKEN) tokenizer.add_special_tokens({"cls_token": special_token}) encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False) self.assertEqual(len(encoded_special_token), 1) text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False) encoded = tokenizer.encode(text, add_special_tokens=False) input_encoded = tokenizer.encode(input_text, add_special_tokens=False) special_token_id = tokenizer.encode(special_token, add_special_tokens=False) self.assertEqual(encoded, input_encoded + special_token_id) decoded = tokenizer.decode(encoded, skip_special_tokens=True) self.assertTrue(special_token not in decoded) def test_tokenize_special_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=True) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): SPECIAL_TOKEN_1 = chr(0xE005) SPECIAL_TOKEN_2 = chr(0xE006) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]}) token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1) token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2) self.assertEqual(len(token_1), 1) self.assertEqual(len(token_2), 1) self.assertEqual(token_1[0], SPECIAL_TOKEN_1) self.assertEqual(token_2[0], SPECIAL_TOKEN_2) @require_tokenizers def test_added_token_serializable(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # a special token for Canine can be defined as follows: NEW_TOKEN = 0xE006 new_token = chr(NEW_TOKEN) new_token = AddedToken(new_token, lstrip=True) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]}) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(tmp_dir_name) tokenizer.from_pretrained(tmp_dir_name) def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self): tokenizer_list = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(tmp_dir) with open(os.path.join(tmp_dir, "special_tokens_map.json"), encoding="utf-8") as json_file: special_tokens_map = json.load(json_file) with open(os.path.join(tmp_dir, "tokenizer_config.json"), encoding="utf-8") as json_file: tokenizer_config = json.load(json_file) # a special token for Canine can be defined as follows: NEW_TOKEN = 0xE006 new_token_1 = chr(NEW_TOKEN) special_tokens_map["additional_special_tokens"] = [new_token_1] tokenizer_config["additional_special_tokens"] = [new_token_1] with open(os.path.join(tmp_dir, "special_tokens_map.json"), "w", encoding="utf-8") as outfile: json.dump(special_tokens_map, outfile) with open(os.path.join(tmp_dir, "tokenizer_config.json"), "w", encoding="utf-8") as outfile: json.dump(tokenizer_config, outfile) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files tokenizer_without_change_in_init = tokenizer_class.from_pretrained(tmp_dir, extra_ids=0) self.assertIn(new_token_1, tokenizer_without_change_in_init.additional_special_tokens) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_1], tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_1]) ), ) NEW_TOKEN = 0xE007 new_token_2 = chr(NEW_TOKEN) # Now we test that we can change the value of additional_special_tokens in the from_pretrained new_added_tokens = [AddedToken(new_token_2, lstrip=True)] tokenizer = tokenizer_class.from_pretrained( tmp_dir, additional_special_tokens=new_added_tokens, extra_ids=0 ) self.assertIn(new_token_2, tokenizer.additional_special_tokens) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_2], tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_2])) ) @require_tokenizers def test_encode_decode_with_spaces(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input = "hello world" if self.space_between_special_tokens: output = "[CLS] hello world [SEP]" else: output = input encoded = tokenizer.encode(input, add_special_tokens=False) decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens) self.assertIn(decoded, [output, output.lower()]) # cannot use default `test_tokenizers_common_ids_setters` method because tokenizer has no vocab def test_tokenizers_common_ids_setters(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): attributes_list = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] token_to_test_setters = "a" token_id_to_test_setters = ord(token_to_test_setters) for attr in attributes_list: setattr(tokenizer, attr + "_id", None) self.assertEqual(getattr(tokenizer, attr), None) self.assertEqual(getattr(tokenizer, attr + "_id"), None) setattr(tokenizer, attr + "_id", token_id_to_test_setters) self.assertEqual(getattr(tokenizer, attr), token_to_test_setters) self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters) setattr(tokenizer, "additional_special_tokens_ids", []) self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), []) self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), []) additional_special_token_id = 0xE006 additional_special_token = chr(additional_special_token_id) setattr(tokenizer, "additional_special_tokens_ids", [additional_special_token_id]) self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [additional_special_token]) self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [additional_special_token_id]) # tokenizer has a fixed vocab_size (namely all possible unicode code points) def test_add_tokens_tokenizer(self): pass # CanineTokenizer does not support do_lower_case = True, as each character has its own Unicode code point # ("b" and "B" for example have different Unicode code points) def test_added_tokens_do_lower_case(self): pass # CanineModel does not support the get_input_embeddings nor the get_vocab method def test_np_encode_plus_sent_to_model(self): pass # CanineModel does not support the get_input_embeddings nor the get_vocab method def test_torch_encode_plus_sent_to_model(self): pass # tokenizer can be instantiated without any pretrained files, so no need for pretrained tokenizer list def test_pretrained_model_lists(self): pass # tokenizer does not have vocabulary def test_get_vocab(self): pass # inputs cannot be pretokenized since ids depend on whole input string and not just on single characters def test_pretokenized_inputs(self): pass # tests all ids in vocab => vocab doesn't exist so unnecessary to test def test_conversion_reversible(self): pass