import argparse import time from PIL import Image import torch import numpy as np import transformers from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer from transformers import StoppingCriteria, StoppingCriteriaList import dataclasses from enum import auto, Enum from typing import List, Tuple, Any import string import cv2 import gradio as gr from huggingface_hub import hf_hub_download, login from open_flamingo.src.factory import create_model_and_transforms class SeparatorStyle(Enum): """Different separator style.""" SINGLE = auto() TWO = auto() @dataclasses.dataclass class Conversation: """A class that keeps all conversation history.""" system: str roles: List[str] messages: List[List[str]] offset: int # system_img: List[Image.Image] = [] sep_style: SeparatorStyle = SeparatorStyle.SINGLE sep: str = "###" sep2: str = None skip_next: bool = False conv_id: Any = None def get_prompt(self): if self.sep_style == SeparatorStyle.SINGLE: ret = self.system + self.sep for role, message in self.messages: if message: ret += role + ": " + message + self.sep else: ret += role + ":" return ret elif self.sep_style == SeparatorStyle.TWO: seps = [self.sep, self.sep2] ret = self.system + seps[0] for i, (role, message) in enumerate(self.messages): if message: ret += role + ": " + message + seps[i % 2] else: ret += role + ":" return ret else: raise ValueError(f"Invalid style: {self.sep_style}") def append_message(self, role, message): self.messages.append([role, message]) def to_gradio_chatbot(self): ret = [] for i, (role, msg) in enumerate(self.messages[self.offset:]): if i % 2 == 0: ret.append([msg, None]) else: ret[-1][-1] = msg return ret def copy(self): return Conversation( system=self.system, # system_img=self.system_img, roles=self.roles, messages=[[x, y] for x, y in self.messages], offset=self.offset, sep_style=self.sep_style, sep=self.sep, sep2=self.sep2, conv_id=self.conv_id) def dict(self): return { "system": self.system, # "system_img": self.system_img, "roles": self.roles, "messages": self.messages, "offset": self.offset, "sep": self.sep, "sep2": self.sep2, "conv_id": self.conv_id, } class StoppingCriteriaSub(StoppingCriteria): def __init__(self, stops=[], encounters=1): super().__init__() self.stops = stops def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): for stop in self.stops: if torch.all((stop == input_ids[0][-len(stop):])).item(): return True return False CONV_VISION = Conversation( system="Give the following image: ImageContent. " "You will be able to see the image once I provide it to you. Please answer my questions.", roles=("Human", "Assistant"), messages=[], offset=2, sep_style=SeparatorStyle.SINGLE, sep="###", ) def get_outputs( model, batch_images, attention_mask, max_generation_length, min_generation_length, num_beams, length_penalty, input_ids, image_start_index_list=None, image_nums=None, bad_words_ids=None, ): # and torch.cuda.amp.autocast(dtype=torch.float16) with torch.inference_mode(): outputs = model( vision_x=batch_images, lang_x=input_ids, attention_mask=attention_mask, labels=None, image_nums=image_nums, image_start_index_list=image_start_index_list, added_bbox_list=None, add_box=False, ) # outputs = model.generate( # batch_images, # input_ids, # attention_mask=attention_mask, # max_new_tokens=max_generation_length, # min_length=min_generation_length, # num_beams=num_beams, # length_penalty=length_penalty, # image_start_index_list=image_start_index_list, # image_nums=image_nums, # bad_words_ids=bad_words_ids, # ) return outputs def generate( idx, image, text, image_processor, tokenizer, flamingo, vis_embed_size=256, rank=0, world_size=1, ): if image is None: raise gr.Error("Please upload an image.") flamingo.eval() loc_token_ids = [] for i in range(1000): loc_token_ids.append(int(tokenizer(f"", add_special_tokens=False)["input_ids"][-1])) media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1] endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1] pad_token_id = tokenizer(tokenizer.pad_token, add_special_tokens=False)["input_ids"][-1] bos_token_id = tokenizer(tokenizer.bos_token, add_special_tokens=False)["input_ids"][-1] prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1] image_ori = image image = image.convert("RGB") width = image.width height = image.height image = image.resize((224, 224)) batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0) if idx == 1: prompt = [f"{tokenizer.bos_token}<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|><|#object#|> {text.rstrip('.').strip()}<|#endofobject#|><|#visual#|>"] bad_words_ids = None max_generation_length = 5 else: prompt = [f"<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|>{text.rstrip('.')}"] bad_words_ids = loc_word_ids max_generation_length = 300 encodings = tokenizer( prompt, padding="longest", truncation=True, return_tensors="pt", max_length=2000, ) input_ids = encodings["input_ids"] attention_mask = encodings["attention_mask"] image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist() image_start_index_list = [[x] for x in image_start_index_list] image_nums = [1] * len(input_ids) outputs = get_outputs( model=flamingo, batch_images=batch_images, attention_mask=attention_mask, max_generation_length=max_generation_length, min_generation_length=4, num_beams=1, length_penalty=1.0, input_ids=input_ids, bad_words_ids=bad_words_ids, image_start_index_list=image_start_index_list, image_nums=image_nums, ) boxes = outputs["boxes"] scores = outputs["scores"] if len(scores) > 0: box = boxes[scores.argmax()]/224 print(f"{box}") if len(boxes)>0: open_cv_image = np.array(image_ori) # Convert RGB to BGR open_cv_image = open_cv_image[:, :, ::-1].copy() box = box*[width,height,width,height] # for box in boxes: open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (255, 0, 0), 2) out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB)) return f"Output:{box}", out_image else: gen_text = tokenizer.batch_decode(outputs) return (f"{gen_text}") def preprocess_conv(data): conversation = "" BEGIN_SIGNAL = "### " END_SIGNAL = "\n" for idx, d in enumerate(data): from_str = d["from"] if from_str.lower() == "human": from_str = "Human" elif from_str.lower() == "gpt": from_str = "Assistant" else: from_str = 'unknown' conversation += (BEGIN_SIGNAL + from_str + ": " + d["value"] + END_SIGNAL) return conversation def preprocess_image(sample, image_processor): image = image_processor(sample) if isinstance(image, transformers.image_processing_utils.BatchFeature): image = torch.tensor(image["pixel_values"][0]) return image class Chat: def __init__(self, model, vis_processor, tokenizer, vis_embed_size ): self.model = model self.vis_processor = vis_processor self.tokenizer = tokenizer self.vis_embed_size = vis_embed_size self.conv = [] # stop_words_ids = [torch.tensor([835]).to(self.device), # torch.tensor([2277, 29937]).to(self.device)] # '###' can be encoded in two different ways. # self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)]) def ask(self, text, conv,radio): if radio in ["Cap"]: conv.append({ "from": "human", "value": "", }) elif radio in ["VQA"]: conv.append({ "from": "human", "value": f"Answer the question using a single word or phrase. {text}", }) elif radio in ["REC"]: conv.append({ "from": "human", "value": f"Please provide the bounding box coordinate of the region this sentence describes: {text}.", }) else: conv.append({ "from": "human", "value": text, }) # if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \ # and conv.messages[-1][1][-6:] == '': # last message is image. # conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text]) # else: # conv.append_message(conv.roles[0], text) def answer(self, conv, img_list, radio, text_input, max_new_tokens=200, num_beams=5, min_length=1, top_p=0.9, repetition_penalty=1.0, length_penalty=1, temperature=1, max_length=2000): # conv.append_message(conv.roles[1], None) # embs = self.get_context_emb(conv, img_list) # # # current_max_len = embs.shape[1] + max_new_tokens + 100 # # begin_idx = max(0, current_max_len - max_length) # # embs = embs[:, begin_idx:] # outputs = self.model.llama_model.generate( # inputs_embeds=embs, # max_new_tokens=max_new_tokens, # stopping_criteria=self.stopping_criteria, # num_beams=num_beams, # min_length=min_length, # top_p=top_p, # repetition_penalty=repetition_penalty, # length_penalty=length_penalty, # temperature=temperature, # ) # output_token = outputs[0] # if output_token[0] == 0: # output_token = output_token[1:] # output_text = self.model.llama_tokenizer.decode(output_token, add_special_tokens=False) # output_text = output_text.split('###')[0] # remove the stop sign '###' # output_text = output_text.split('Assistant:')[-1].strip() # conv.messages[-1][1] = output_text visual_token = "<|#visual#|>" previsual_token = "<|#previsual#|>" box_token = "<|#box#|>" prebox_token = "<|#prebox#|>" end_token = "<|#endofobject#|>" object_token = "<|#object#|>" end_of_attr_token = "<|#endofattr#|>" preend_of_attr_token = "<|#preendofattr#|>" media_token_id = self.tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1] box_token_id = self.tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1] endofobject_token_id = self.tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1] endofattr_token_id = self.tokenizer("<|#endofattr#|>", add_special_tokens=False)["input_ids"][-1] endofmedia_token_id = self.tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1] visual_token_id = self.tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1] previsual_token_id = self.tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1] prebox_token_id = self.tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1] size = 224 self.model.eval() # "/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/cdl/tmp_img/chat_vis/chat19.png" # image_path = input("Please enter the image path: ") image = img_list[0].convert("RGB") image_ori = image image = image.resize((size, size)) print(f"image size: {image.size}") batch_images = preprocess_image(image, self.vis_processor).unsqueeze(0).unsqueeze(1).unsqueeze(0) # conversation = [] human_sentence = None if radio in ["Cap","VQA"]: conv.append({ "from": "gpt", "value": "", }) elif radio in ["REC"]: conv.append( { "from": "gpt", "value": object_token + text_input + end_token + visual_token, } ) else: conv.append({ "from": "gpt", "value": "", }) # while True: # human_sentence = input("### Human: ") # if human_sentence == "#end#": # break # conversation.append({ # "from": "human", # "value": human_sentence, # }) # conversation.append({ # "from": "gpt", # "value": "", # }) text = preprocess_conv(conv).strip() caption = f"<|#image#|>{self.tokenizer.pad_token * self.vis_embed_size}<|#endofimage#|>{text}" encodings = self.tokenizer( caption, padding="longest", truncation=True, return_tensors="pt", max_length=2000, ) input_ids = encodings["input_ids"] attention_mask = encodings["attention_mask"] image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist() image_start_index_list = [[x] for x in image_start_index_list] image_nums = [1] * len(input_ids) added_bbox_list = [] with torch.inference_mode(): text_outputs = self.model.generate( batch_images, input_ids, attention_mask=attention_mask, max_new_tokens=20, # min_new_tokens=8, num_beams=1, # length_penalty=0, image_start_index_list=image_start_index_list, image_nums=image_nums, added_bbox_list=added_bbox_list if len(added_bbox_list) != 0 else None, ) # and torch.cuda.amp.autocast(dtype=torch.float16) with torch.no_grad(): outputs = self.model( vision_x=batch_images, lang_x=input_ids, attention_mask=attention_mask, image_nums=image_nums, image_start_index_list=image_start_index_list, added_bbox_list=None, add_box=False, ) boxes = outputs["boxes"] scores = outputs["scores"] if len(scores) > 0: box = boxes[scores.argmax()] / 224 print(f"{box}") out_image = None if len(boxes)>0: width, height = image_ori.size open_cv_image = np.array(image_ori) # Convert RGB to BGR open_cv_image = open_cv_image[:, :, ::-1].copy() box = box * [width, height, width, height] # for box in boxes: open_cv_image = cv2.rectangle(open_cv_image, box[:2].astype(int), box[2:].astype(int), (255, 0, 0), 2) out_image = Image.fromarray(cv2.cvtColor(open_cv_image, cv2.COLOR_BGR2RGB)) # output_token = outputs[0, input_ids.shape[1]:] # output_text = tokenizer.decode(output_token, skip_special_tokens=True).strip() # conv[-1]["value"] = output_text # # conv.messages[-1][1] = output_text # print( # f"### Assistant: {tokenizer.decode(outputs[0, input_ids.shape[1]:], skip_special_tokens=True).strip()}") output_text = self.tokenizer.decode(text_outputs[0]) output_text = re.findall(r'Assistant:(.+)', output_text)[-1] return output_text, out_image def upload_img(self, image, conv, img_list): img_list.append(image) # if isinstance(image, str): # is a image path # raw_image = Image.open(image).convert('RGB') # image = image.resize((224, 224)) # image = self.vis_processor(raw_image).unsqueeze(0).unsqueeze(1).unsqueeze(0) # elif isinstance(image, Image.Image): # raw_image = image # image = image.resize((224, 224)) # image = self.vis_processor(raw_image).unsqueeze(0).unsqueeze(1).unsqueeze(0) # elif isinstance(image, torch.Tensor): # if len(image.shape) == 3: # image = image.unsqueeze(0) # # image = image.to(self.device) # # # image_emb, _ = self.model.encode_img(image) # img_list.append(image_emb) # conv.append_message(conv.roles[0], "") msg = "Received." # self.conv.append_message(self.conv.roles[1], msg) return msg # def get_context_emb(self, conv, img_list): # prompt = conv.get_prompt() # prompt_segs = prompt.split('') # assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images." # seg_tokens = [ # self.model.llama_tokenizer( # seg, return_tensors="pt", add_special_tokens=i == 0).to(self.device).input_ids # # only add bos to the first seg # for i, seg in enumerate(prompt_segs) # ] # seg_embs = [self.model.llama_model.model.embed_tokens(seg_t) for seg_t in seg_tokens] # mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]] # mixed_embs = torch.cat(mixed_embs, dim=1) # return mixed_embs def evaluate_exp( model, tokenizer, image_processor, vis_embed_size=None, rank=0, world_size=1, id=0, add_visual=True, ): media_token_id = tokenizer("<|#image#|>", add_special_tokens=False)["input_ids"][-1] box_token_id = tokenizer("<|#box#|>", add_special_tokens=False)["input_ids"][-1] endofobject_token_id = tokenizer("<|#endofobject#|>", add_special_tokens=False)["input_ids"][-1] endofattr_token_id = tokenizer("<|#endofattr#|>", add_special_tokens=False)["input_ids"][-1] endofmedia_token_id = tokenizer("<|#endofimage#|>", add_special_tokens=False)["input_ids"][-1] visual_token_id = tokenizer("<|#visual#|>", add_special_tokens=False)["input_ids"][-1] previsual_token_id = tokenizer("<|#previsual#|>", add_special_tokens=False)["input_ids"][-1] prebox_token_id = tokenizer("<|#prebox#|>", add_special_tokens=False)["input_ids"][-1] size = image_processor.size["shortest_edge"] model.eval() # "/gpfs/u/home/LMCG/LMCGljnn/scratch-shared/cdl/tmp_img/chat_vis/chat19.png" image_path = input("Please enter the image path: ") image = Image.open(image_path).convert("RGB") image = image.resize((size, size)) print(f"image size: {image.size}") batch_images = preprocess_image(image, image_processor).unsqueeze(0).unsqueeze(1).unsqueeze(0) conversation = [] human_sentence = None while True: human_sentence = input("### Human: ") if human_sentence == "#end#": break conversation.append({ "from": "human", "value": human_sentence, }) conversation.append({ "from": "gpt", "value": "", }) text = preprocess_conv(conversation).strip() caption = f"<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|>{text}" encodings = tokenizer( caption, padding="longest", truncation=True, return_tensors="pt", max_length=2000, ) input_ids = encodings["input_ids"].to("cuda") attention_mask = encodings["attention_mask"].to("cuda") image_start_index_list = ((input_ids == media_token_id).nonzero(as_tuple=True)[-1] + 1).tolist() image_start_index_list = [[x] for x in image_start_index_list] image_nums = [1] * len(input_ids) with torch.no_grad() and torch.cuda.amp.autocast(dtype=torch.float16): outputs = model.generate( batch_images, input_ids, attention_mask=attention_mask, max_new_tokens=100, # min_new_tokens=8, num_beams=1, image_start_index_list=image_start_index_list, image_nums=image_nums, ) print(f"### Assistant: {tokenizer.decode(outputs[0, input_ids.shape[1]:], skip_special_tokens=True).strip()}")