# YOLOX-OpenVINO in Python This tutorial includes a Python demo for OpenVINO, as well as some converted models. ### Download OpenVINO models. | Model | Parameters | GFLOPs | Test Size | mAP | Weights | |:------| :----: | :----: | :---: | :---: | :---: | | [YOLOX-Nano](../../../exps/default/nano.py) | 0.91M | 1.08 | 416x416 | 25.8 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_nano_openvino.tar.gz) | | [YOLOX-Tiny](../../../exps/default/yolox_tiny.py) | 5.06M | 6.45 | 416x416 |32.8 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_tiny_openvino.tar.gz) | | [YOLOX-S](../../../exps/default/yolox_s.py) | 9.0M | 26.8 | 640x640 |40.5 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s_openvino.tar.gz) | | [YOLOX-M](../../../exps/default/yolox_m.py) | 25.3M | 73.8 | 640x640 |47.2 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_m_openvino.tar.gz) | | [YOLOX-L](../../../exps/default/yolox_l.py) | 54.2M | 155.6 | 640x640 |50.1 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_l_openvino.tar.gz) | | [YOLOX-Darknet53](../../../exps/default/yolov3.py) | 63.72M | 185.3 | 640x640 |48.0 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_dark_openvino.tar.gz) | | [YOLOX-X](../../../exps/default/yolox_x.py) | 99.1M | 281.9 | 640x640 |51.5 | [github](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_x_openvino.tar.gz) | ## Install OpenVINO Toolkit Please visit [Openvino Homepage](https://docs.openvinotoolkit.org/latest/get_started_guides.html) for more details. ## Set up the Environment ### For Linux **Option1. Set up the environment tempororally. You need to run this command everytime you start a new shell window.** ```shell source /opt/intel/openvino_2021/bin/setupvars.sh ``` **Option2. Set up the environment permenantly.** *Step1.* For Linux: ```shell vim ~/.bashrc ``` *Step2.* Add the following line into your file: ```shell source /opt/intel/openvino_2021/bin/setupvars.sh ``` *Step3.* Save and exit the file, then run: ```shell source ~/.bashrc ``` ## Convert model 1. Export ONNX model Please refer to the [ONNX tutorial](https://github.com/Megvii-BaseDetection/YOLOX/demo/ONNXRuntime). **Note that you should set --opset to 10, otherwise your next step will fail.** 2. Convert ONNX to OpenVINO ``` shell cd /openvino_2021/deployment_tools/model_optimizer ``` Install requirements for convert tool ```shell sudo ./install_prerequisites/install_prerequisites_onnx.sh ``` Then convert model. ```shell python3 mo.py --input_model --input_shape [--data_type FP16] ``` For example: ```shell python3 mo.py --input_model yolox.onnx --input_shape [1,3,640,640] --data_type FP16 --output_dir converted_output ``` ## Demo ### python ```shell python openvino_inference.py -m -i ``` or ```shell python openvino_inference.py -m -i -o -s -d ```