#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import os import torch.nn as nn from yolox.exp import Exp as MyExp class Exp(MyExp): def __init__(self): super(Exp, self).__init__() self.depth = 0.33 self.width = 0.25 self.input_size = (416, 416) self.mosaic_scale = (0.5, 1.5) self.random_size = (10, 20) self.test_size = (416, 416) self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0] self.enable_mixup = False # Define yourself dataset path self.data_dir = "datasets/coco128" self.train_ann = "instances_train2017.json" self.val_ann = "instances_val2017.json" self.num_classes = 71 def get_model(self, sublinear=False): def init_yolo(M): for m in M.modules(): if isinstance(m, nn.BatchNorm2d): m.eps = 1e-3 m.momentum = 0.03 if "model" not in self.__dict__: from yolox.models import YOLOX, YOLOPAFPN, YOLOXHead in_channels = [256, 512, 1024] # NANO model use depthwise = True, which is main difference. backbone = YOLOPAFPN(self.depth, self.width, in_channels=in_channels, depthwise=True) head = YOLOXHead(self.num_classes, self.width, in_channels=in_channels, depthwise=True) self.model = YOLOX(backbone, head) self.model.apply(init_yolo) self.model.head.initialize_biases(1e-2) return self.model