#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import argparse import os import random import warnings from loguru import logger import torch import torch.backends.cudnn as cudnn from torch.nn.parallel import DistributedDataParallel as DDP from yolox.core import launch from yolox.exp import get_exp from yolox.utils import ( configure_module, configure_nccl, fuse_model, get_local_rank, get_model_info, setup_logger ) def make_parser(): parser = argparse.ArgumentParser("YOLOX Eval") parser.add_argument("-expn", "--experiment-name", type=str, default=None) parser.add_argument("-n", "--name", type=str, default=None, help="model name") # distributed parser.add_argument( "--dist-backend", default="nccl", type=str, help="distributed backend" ) parser.add_argument( "--dist-url", default=None, type=str, help="url used to set up distributed training", ) parser.add_argument("-b", "--batch-size", type=int, default=64, help="batch size") parser.add_argument( "-d", "--devices", default=None, type=int, help="device for training" ) parser.add_argument( "--num_machines", default=1, type=int, help="num of node for training" ) parser.add_argument( "--machine_rank", default=0, type=int, help="node rank for multi-node training" ) parser.add_argument( "-f", "--exp_file", default=None, type=str, help="please input your experiment description file", ) parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt for eval") parser.add_argument("--conf", default=None, type=float, help="test conf") parser.add_argument("--nms", default=None, type=float, help="test nms threshold") parser.add_argument("--tsize", default=None, type=int, help="test img size") parser.add_argument("--seed", default=None, type=int, help="eval seed") parser.add_argument( "--fp16", dest="fp16", default=False, action="store_true", help="Adopting mix precision evaluating.", ) parser.add_argument( "--fuse", dest="fuse", default=False, action="store_true", help="Fuse conv and bn for testing.", ) parser.add_argument( "--trt", dest="trt", default=False, action="store_true", help="Using TensorRT model for testing.", ) parser.add_argument( "--legacy", dest="legacy", default=False, action="store_true", help="To be compatible with older versions", ) parser.add_argument( "--test", dest="test", default=False, action="store_true", help="Evaluating on test-dev set.", ) parser.add_argument( "--speed", dest="speed", default=False, action="store_true", help="speed test only.", ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) return parser @logger.catch def main(exp, args, num_gpu): if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn( "You have chosen to seed testing. This will turn on the CUDNN deterministic setting, " ) is_distributed = num_gpu > 1 # set environment variables for distributed training configure_nccl() cudnn.benchmark = True rank = get_local_rank() file_name = os.path.join(exp.output_dir, args.experiment_name) if rank == 0: os.makedirs(file_name, exist_ok=True) setup_logger(file_name, distributed_rank=rank, filename="val_log.txt", mode="a") logger.info("Args: {}".format(args)) if args.conf is not None: exp.test_conf = args.conf if args.nms is not None: exp.nmsthre = args.nms if args.tsize is not None: exp.test_size = (args.tsize, args.tsize) model = exp.get_model() logger.info("Model Summary: {}".format(get_model_info(model, exp.test_size))) logger.info("Model Structure:\n{}".format(str(model))) evaluator = exp.get_evaluator(args.batch_size, is_distributed, args.test, args.legacy) evaluator.per_class_AP = True evaluator.per_class_AR = True torch.cuda.set_device(rank) model.cuda(rank) model.eval() if not args.speed and not args.trt: if args.ckpt is None: ckpt_file = os.path.join(file_name, "best_ckpt.pth") else: ckpt_file = args.ckpt logger.info("loading checkpoint from {}".format(ckpt_file)) loc = "cuda:{}".format(rank) ckpt = torch.load(ckpt_file, map_location=loc) model.load_state_dict(ckpt["model"]) logger.info("loaded checkpoint done.") if is_distributed: model = DDP(model, device_ids=[rank]) if args.fuse: logger.info("\tFusing model...") model = fuse_model(model) if args.trt: assert ( not args.fuse and not is_distributed and args.batch_size == 1 ), "TensorRT model is not support model fusing and distributed inferencing!" trt_file = os.path.join(file_name, "model_trt.pth") assert os.path.exists( trt_file ), "TensorRT model is not found!\n Run tools/trt.py first!" model.head.decode_in_inference = False decoder = model.head.decode_outputs else: trt_file = None decoder = None # start evaluate *_, summary = evaluator.evaluate( model, is_distributed, args.fp16, trt_file, decoder, exp.test_size ) logger.info("\n" + summary) if __name__ == "__main__": configure_module() args = make_parser().parse_args() exp = get_exp(args.exp_file, args.name) exp.merge(args.opts) if not args.experiment_name: args.experiment_name = exp.exp_name num_gpu = torch.cuda.device_count() if args.devices is None else args.devices assert num_gpu <= torch.cuda.device_count() dist_url = "auto" if args.dist_url is None else args.dist_url launch( main, num_gpu, args.num_machines, args.machine_rank, backend=args.dist_backend, dist_url=dist_url, args=(exp, args, num_gpu), )