|
import streamlit as st |
|
import pandas as pd |
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
body { |
|
color: #fff; |
|
background-color: #111; |
|
} |
|
/* 调整全局容器宽度为屏幕的 90%,自适应屏幕 */ |
|
.css-1d391kg { |
|
padding: 1rem 1rem; /* 调整内边距 */ |
|
} |
|
/* 设置主体内容最大宽度为100%,自适应屏幕 */ |
|
.css-1lcbmhc { |
|
max-width: 100%; |
|
} |
|
.stDataFrame { |
|
font-family: Helvetica; |
|
font-size: 16px; |
|
width: 100%; |
|
min-width: 100%; |
|
} |
|
h1 { |
|
color: #ffdf92; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.title('AEOLLM leaderboard') |
|
|
|
|
|
st.markdown(""" |
|
This leaderboard is used to show the performance of the **automation evaluation methods of LLMs** submitted by the **AEOLLM team** on four tasks: |
|
- Summary Generation (SG) |
|
- Non-Factoid QA (NFQA) |
|
- Dialogue Generation (DG) |
|
- Text Expansion (TE). |
|
""", unsafe_allow_html=True) |
|
|
|
SG = { |
|
"methods": ["Model A", "Model B", "Model C"], |
|
"team": ["U1", "U2", "U3"], |
|
"acc": [0.75, 0.64, 0.83], |
|
"tau": [0.05, 0.28, 0.16], |
|
"s": [0.12, 0.27, 0.18] |
|
} |
|
df1 = pd.DataFrame(SG) |
|
|
|
NFQA = { |
|
"methods": ["Model A", "Model B", "Model C"], |
|
"team": ["U1", "U2", "U3"], |
|
"acc": [0.75, 0.64, 0.83], |
|
"tau": [0.05, 0.28, 0.16], |
|
"s": [0.12, 0.27, 0.18] |
|
} |
|
df2 = pd.DataFrame(NFQA) |
|
|
|
DG = { |
|
"methods": ["Model A", "Model B", "Model C"], |
|
"team": ["U1", "U2", "U3"], |
|
"acc": [0.75, 0.64, 0.83], |
|
"tau": [0.05, 0.28, 0.16], |
|
"s": [0.12, 0.27, 0.18] |
|
} |
|
df3 = pd.DataFrame(DG) |
|
|
|
TE = { |
|
"methods": ["Model A", "Model B", "Model C"], |
|
"team": ["U1", "U2", "U3"], |
|
"acc": [0.75, 0.64, 0.83], |
|
"tau": [0.05, 0.28, 0.16], |
|
"s": [0.12, 0.27, 0.18] |
|
} |
|
df4 = pd.DataFrame(TE) |
|
|
|
|
|
tab1, tab2, tab3, tab4 = st.tabs(["SG", "NFQA", "DG", "TE"]) |
|
|
|
|
|
with tab1: |
|
st.header("Summary Generation") |
|
st.dataframe(df1) |
|
|
|
|
|
with tab2: |
|
st.header("Non-Factoid QA") |
|
st.dataframe(df2) |
|
|
|
|
|
with tab3: |
|
st.header("Dialogue Generation") |
|
st.dataframe(df3) |
|
|
|
|
|
with tab4: |
|
st.header("Text Expansion") |
|
st.dataframe(df4) |
|
|