Spaces:
Runtime error
Runtime error
File size: 9,352 Bytes
3d3e4e9 4f0052e 3d3e4e9 4f0052e 3d3e4e9 6af8c80 3d3e4e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from datetime import datetime
import os
import time
import torch
from typing import Dict, List, Optional, Union
from omegaconf import OmegaConf, DictConfig
import hydra
from hydra.utils import instantiate, get_original_cwd
import time
from functools import partial
import matplotlib.pyplot as plt
import shutil
from util.utils import seed_all_random_engines
from util.load_img_folder import load_and_preprocess_images
from util.geometry_guided_sampling import geometry_guided_sampling
from pytorch3d.vis.plotly_vis import get_camera_wireframe
import subprocess
import tempfile
import gradio as gr
def plot_cameras(ax, cameras, color: str = "blue"):
"""
Plots a set of `cameras` objects into the maplotlib axis `ax` with
color `color`.
"""
cam_wires_canonical = get_camera_wireframe()[None]
cam_trans = cameras.get_world_to_view_transform().inverse()
cam_wires_trans = cam_trans.transform_points(cam_wires_canonical)
plot_handles = []
for wire in cam_wires_trans:
# the Z and Y axes are flipped intentionally here!
x_, z_, y_ = wire.detach().numpy().T.astype(float)
(h,) = ax.plot(x_, y_, z_, color=color, linewidth=0.3)
plot_handles.append(h)
return plot_handles
def create_matplotlib_figure(pred_cameras):
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
ax.clear()
handle_cam = plot_cameras(ax, pred_cameras, color="#FF7D1E")
plot_radius = 3
ax.set_xlim3d([-plot_radius, plot_radius])
ax.set_ylim3d([3 - plot_radius, 3 + plot_radius])
ax.set_zlim3d([-plot_radius, plot_radius])
ax.set_xlabel("x")
ax.set_ylabel("z")
ax.set_zlabel("y")
labels_handles = {
"Estimated cameras": handle_cam[0],
}
ax.legend(
labels_handles.values(),
labels_handles.keys(),
loc="upper center",
bbox_to_anchor=(0.5, 0),
)
return plt
import os
import json
import tempfile
from PIL import Image
def convert_extrinsics_pytorch3d_to_opengl(extrinsics: torch.Tensor) -> torch.Tensor:
"""
Convert extrinsics from PyTorch3D coordinate system to OpenGL coordinate system.
Args:
extrinsics (torch.Tensor): a 4x4 extrinsic matrix in PyTorch3D coordinate system.
Returns:
torch.Tensor: a 4x4 extrinsic matrix in OpenGL coordinate system.
"""
# Create a transformation matrix that flips the Z-axis
flip_z = torch.eye(4)
flip_z[2, 2] = -1
flip_z[0, 0] = -1
# Multiply the extrinsic matrix by the transformation matrix
extrinsics_opengl = torch.mm(extrinsics, flip_z)
return extrinsics_opengl
import json
from typing import List, Dict, Any
def create_camera_json(extrinsics: Any, focal_length_world: float, principle_points: List[float], image_size: int) -> str:
# Initialize the dictionary
camera_dict = {
"w": image_size,
"h": image_size,
"fl_x": float(focal_length_world[0]),
"fl_y": float(focal_length_world[1]),
"cx": float(principle_points[0]),
"cy": float(principle_points[1]),
"k1": 0.0, # Assuming these values are not provided
"k2": 0.0, # Assuming these values are not provided
"p1": 0.0, # Assuming these values are not provided
"p2": 0.0, # Assuming these values are not provided
"camera_model": "OPENCV",
"frames": []
}
# Add frames to the dictionary
for i, extrinsic in enumerate(extrinsics):
frame = {
"file_path": f"images/frame_{str(i).zfill(5)}.jpg",
"transform_matrix": extrinsic.tolist(),
"colmap_im_id": i
}
# Convert numpy float32 to Python's native float
frame["transform_matrix"] = [[float(element) for element in row] for row in frame["transform_matrix"]]
camera_dict["frames"].append(frame)
return camera_dict
def archieve_images_and_transforms(images, pred_cameras, image_size):
images_array = images.permute(0, 2, 3, 1).cpu().numpy() * 255
images_pil = [Image.fromarray(image.astype('uint8')) for image in images_array]
with tempfile.TemporaryDirectory() as temp_dir:
images_dir = os.path.join(temp_dir, 'images')
os.makedirs(images_dir, exist_ok=True)
images_path = []
for i, image in enumerate(images_pil):
image_path = os.path.join(images_dir, 'frame_{:05d}.jpg'.format(i))
image.save(image_path)
images_path.append(image_path)
cam_trans = pred_cameras.get_world_to_view_transform()
extrinsics = cam_trans.inverse().get_matrix().cpu()
extrinsics = [convert_extrinsics_pytorch3d_to_opengl(extrinsic.T) for extrinsic in extrinsics]
focal_length_ndc = pred_cameras.focal_length.mean(dim=0).cpu().numpy()
focal_length_world = focal_length_ndc * image_size / 2
principle_points = [image_size / 2, image_size / 2]
camera_dict = create_camera_json(extrinsics, focal_length_world, principle_points, image_size)
json_path = os.path.join(temp_dir, 'transforms.json')
with open(json_path, 'w') as f:
json.dump(camera_dict, f, indent=4)
project_name = datetime.now().strftime("%Y%m%d-%H%M%S")
shutil.make_archive(f'/tmp/{project_name}', 'zip', temp_dir)
return f'/tmp/{project_name}.zip'
def estimate_images_pose(image_folder, mode) -> None:
print("Slected mode:", mode)
with hydra.initialize(config_path="./cfgs/"):
cfg = hydra.compose(config_name=mode)
OmegaConf.set_struct(cfg, False)
print("Model Config:")
print(OmegaConf.to_yaml(cfg))
# Check for GPU availability and set the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Instantiate the model
model = instantiate(cfg.MODEL, _recursive_=False)
# Load and preprocess images
images, image_info = load_and_preprocess_images(image_folder, cfg.image_size)
# Load checkpoint
ckpt_path = os.path.join(cfg.ckpt)
if os.path.isfile(ckpt_path):
checkpoint = torch.load(ckpt_path, map_location=device)
model.load_state_dict(checkpoint, strict=True)
print(f"Loaded checkpoint from: {ckpt_path}")
else:
raise ValueError(f"No checkpoint found at: {ckpt_path}")
# Move model and images to the GPU
model = model.to(device)
images = images.to(device)
# Evaluation Mode
model.eval()
# Seed random engines
seed_all_random_engines(cfg.seed)
# Start the timer
start_time = time.time()
# Perform match extraction
cond_fn = None
print("[92m=====> Sampling without GGS <=====[0m")
# Forward
with torch.no_grad():
# Obtain predicted camera parameters
# pred_cameras is a PerspectiveCameras object with attributes
# pred_cameras.R, pred_cameras.T, pred_cameras.focal_length
# The poses and focal length are defined as
# NDC coordinate system in
# https://github.com/facebookresearch/pytorch3d/blob/main/docs/notes/cameras.md
pred_cameras = model(
image=images, cond_fn=cond_fn, cond_start_step=cfg.GGS.start_step
)
# Stop the timer and calculate elapsed time
end_time = time.time()
elapsed_time = end_time - start_time
print("Time taken: {:.4f} seconds".format(elapsed_time))
zip_path = archieve_images_and_transforms(images, pred_cameras, cfg.image_size)
return create_matplotlib_figure(pred_cameras), zip_path
def extract_frames_from_video(video_path: str) -> str:
"""
Extracts frames from a video file and saves them in a temporary directory.
Returns the path to the directory containing the frames.
"""
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, "%03d.jpg")
command = [
"ffmpeg",
"-i", video_path,
"-vf", "fps=1",
output_path
]
subprocess.run(command, check=True)
return temp_dir
def estimate_video_pose(video_path: str, mode: str) -> plt.Figure:
"""
Estimates the pose of objects in a video.
"""
# Extract frames from the video
image_folder = extract_frames_from_video(video_path)
# Estimate the pose for each frame
fig = estimate_images_pose(image_folder, mode)
return fig
if __name__ == "__main__":
examples = [["examples/" + img, 'fast'] for img in os.listdir("examples/")]
# Create a Gradio interface
iface = gr.Interface(
fn=estimate_video_pose,
inputs=[gr.inputs.Video(label='video', type='mp4'),
gr.inputs.Radio(choices=['fast', 'precise'], default='fast',
label='Estimation Model, fast is quick, usually within 1 seconds; precise has higher accuracy, but usually take several minutes')],
outputs=['plot', 'file'],
title="PoseDiffusion Demo: Solving Pose Estimation via Diffusion-aided Bundle Adjustment",
description="Upload a video for object pose estimation. The object should be centrally located within the frame.",
examples=examples,
cache_examples=True
)
iface.launch() |