PoseDiffusion_MVP / util /get_fundamental_matrix.py
hugoycj
Initial commit
3d3e4e9
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import torch
import pytorch3d
from pytorch3d.utils import opencv_from_cameras_projection
from pytorch3d.transforms.so3 import hat
from pytorch3d.renderer.cameras import CamerasBase, PerspectiveCameras
def get_fundamental_matrices(
camera: CamerasBase,
height: int,
width: int,
index1: torch.LongTensor,
index2: torch.LongTensor,
l2_normalize_F=False,
):
"""Compute fundamental matrices for given camera parameters."""
batch_size = camera.R.shape[0]
# Convert to opencv / colmap / Hartley&Zisserman convention
image_size_t = (
torch.LongTensor([height, width])[None]
.repeat(batch_size, 1)
.to(camera.device)
)
R, t, K = opencv_from_cameras_projection(camera, image_size=image_size_t)
F, E = get_fundamental_matrix(
K[index1], R[index1], t[index1], K[index2], R[index2], t[index2]
)
if l2_normalize_F:
F_scale = torch.norm(F, dim=(1, 2))
F_scale = F_scale.clamp(min=0.0001)
F = F / F_scale[:, None, None]
return F
def get_fundamental_matrix(K1, R1, t1, K2, R2, t2):
E = get_essential_matrix(R1, t1, R2, t2)
F = K2.inverse().permute(0, 2, 1).matmul(E).matmul(K1.inverse())
return F, E # p2^T F p1 = 0
def get_essential_matrix(R1, t1, R2, t2):
R12 = R2.matmul(R1.permute(0, 2, 1))
t12 = t2 - R12.matmul(t1[..., None])[..., 0]
E_R = R12
E_t = -E_R.permute(0, 2, 1).matmul(t12[..., None])[..., 0]
E = E_R.matmul(hat(E_t))
return E