# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import pytorch3d from pytorch3d.utils import opencv_from_cameras_projection from pytorch3d.transforms.so3 import hat from pytorch3d.renderer.cameras import CamerasBase, PerspectiveCameras def get_fundamental_matrices( camera: CamerasBase, height: int, width: int, index1: torch.LongTensor, index2: torch.LongTensor, l2_normalize_F=False, ): """Compute fundamental matrices for given camera parameters.""" batch_size = camera.R.shape[0] # Convert to opencv / colmap / Hartley&Zisserman convention image_size_t = ( torch.LongTensor([height, width])[None] .repeat(batch_size, 1) .to(camera.device) ) R, t, K = opencv_from_cameras_projection(camera, image_size=image_size_t) F, E = get_fundamental_matrix( K[index1], R[index1], t[index1], K[index2], R[index2], t[index2] ) if l2_normalize_F: F_scale = torch.norm(F, dim=(1, 2)) F_scale = F_scale.clamp(min=0.0001) F = F / F_scale[:, None, None] return F def get_fundamental_matrix(K1, R1, t1, K2, R2, t2): E = get_essential_matrix(R1, t1, R2, t2) F = K2.inverse().permute(0, 2, 1).matmul(E).matmul(K1.inverse()) return F, E # p2^T F p1 = 0 def get_essential_matrix(R1, t1, R2, t2): R12 = R2.matmul(R1.permute(0, 2, 1)) t12 = t2 - R12.matmul(t1[..., None])[..., 0] E_R = R12 E_t = -E_R.permute(0, 2, 1).matmul(t12[..., None])[..., 0] E = E_R.matmul(hat(E_t)) return E