|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "HuggingFaceTB/finemath-ablation-finemath-infimath-4plus" |
|
|
|
device = "cpu" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name).to(device) |
|
|
|
|
|
def generate_text(prompt): |
|
inputs = tokenizer.encode(prompt, return_tensors="pt").to(device) |
|
outputs = model.generate(inputs, max_length=100, num_return_sequences=1) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
interface = gr.Interface( |
|
fn=generate_text, |
|
inputs="text", |
|
outputs="text", |
|
title="MatheuX", |
|
description="MatheuX de LuXe on the FluX" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
interface.launch() |