# Import necessary libraries | |
import streamlit as st | |
import transformers | |
import torch | |
from transformers import pipeline | |
# Set up the Streamlit app | |
st.title("Emotion Detection with Transformers") | |
# Create a text input widget | |
user_input = st.text_area("Enter your text:") | |
# Define a function for sentiment analysis using transformers | |
def load_model(): | |
return pipeline("sentiment-analysis") | |
# Load the sentiment analysis model | |
sentiment_analyzer = load_model() | |
# Create a button to analyze the emotion | |
if st.button("Analyze Emotion"): | |
if user_input: | |
# Perform sentiment analysis on user input | |
result = sentiment_analyzer(user_input) | |
# Display the result | |
emotion = result[0]['label'] | |
st.write(f"Emotion: {emotion}") | |
else: | |
st.warning("Please enter some text to analyze.") | |