Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
|
5 |
+
# Set up Streamlit
|
6 |
+
st.title("Emotion Detection with Transformers")
|
7 |
+
|
8 |
+
# Text input
|
9 |
+
user_input = st.text_area("Enter your text:")
|
10 |
+
|
11 |
+
|
12 |
+
# Function to load model and tokenizer using @st.cache_data
|
13 |
+
@st.cache_data()
|
14 |
+
def load_model_and_tokenizer():
|
15 |
+
model_name = "mrm8488/t5-base-finetuned-emotion"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
18 |
+
return tokenizer, model
|
19 |
+
|
20 |
+
|
21 |
+
tokenizer, model = load_model_and_tokenizer()
|
22 |
+
|
23 |
+
|
24 |
+
# Function to analyze emotion
|
25 |
+
def analyze_emotion(text):
|
26 |
+
if text.strip() == "":
|
27 |
+
return "Please enter some text to analyze."
|
28 |
+
|
29 |
+
input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
|
30 |
+
|
31 |
+
output = model.generate(input_ids=input_ids,
|
32 |
+
max_length=2)
|
33 |
+
|
34 |
+
dec = [tokenizer.decode(ids, skip_special_tokens=True) for ids in output]
|
35 |
+
label = dec[0]
|
36 |
+
|
37 |
+
return f"Emotion: {label.capitalize()}"
|
38 |
+
|
39 |
+
|
40 |
+
# Analyze button
|
41 |
+
if st.button("Analyze Emotion"):
|
42 |
+
result = analyze_emotion(user_input)
|
43 |
+
st.write(result)
|