Spaces:
Runtime error
Runtime error
File size: 9,899 Bytes
4deac9e e26be6b cae8c1b 4deac9e fd21c83 d76914f 4deac9e 8f66cf3 4deac9e acef490 4deac9e 0eceb12 4deac9e cae8c1b 4deac9e fd21c83 4deac9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import os
import gradio as gr
from text_generation import Client, InferenceAPIClient
openchat_preprompt = (
"\n<human>: Hi!\n<bot>: Hi!\nMy name is Kleber Assistant, model version is 0.1, part of an open-source kit for "
"fine-tuning new specialists bots! I was created by Together, LAION, and Ontocord.ai and the open-source "
"community, this model is from CloudQI using this base. I am not human, not evil and not alive, and thus have no thoughts and feelings, "
"but I am programmed to be helpful, polite, honest, and friendly.\n"
)
def get_client(model: str):
if model == "Rallio67/joi2_20Be_instruct_alpha":
return Client(os.getenv("JOI_API_URL"))
if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
return Client(os.getenv("OPENCHAT_API_URL"))
return InferenceAPIClient(model, token=os.getenv("HF_TOKEN", None))
def get_usernames(model: str):
"""
Returns:
(str, str, str, str): pre-prompt, username, bot name, separator
"""
if model == "OpenAssistant/oasst-sft-1-pythia-12b":
return "", "<|prompter|>", "<|assistant|>", "<|endoftext|>"
if model == "Rallio67/joi2_20Be_instruct_alpha":
return "", "User: ", "Joi: ", "\n\n"
if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
return openchat_preprompt, "<human>: ", "<bot>: ", "\n"
return "", "User: ", "Assistant: ", "\n"
def predict(
model: str,
inputs: str,
typical_p: float,
top_p: float,
temperature: float,
top_k: int,
repetition_penalty: float,
watermark: bool,
chatbot,
history,
):
client = get_client(model)
preprompt, user_name, assistant_name, sep = get_usernames(model)
history.append(inputs)
past = []
for data in chatbot:
user_data, model_data = data
if not user_data.startswith(user_name):
user_data = user_name + user_data
if not model_data.startswith(sep + assistant_name):
model_data = sep + assistant_name + model_data
past.append(user_data + model_data.rstrip() + sep)
if not inputs.startswith(user_name):
inputs = user_name + inputs
total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
partial_words = ""
if model == "OpenAssistant/oasst-sft-1-pythia-12b":
iterator = client.generate_stream(
total_inputs,
typical_p=typical_p,
truncate=1000,
watermark=watermark,
max_new_tokens=500,
)
else:
iterator = client.generate_stream(
total_inputs,
top_p=top_p if top_p < 1.0 else None,
top_k=top_k,
truncate=1000,
repetition_penalty=repetition_penalty,
watermark=watermark,
temperature=temperature,
max_new_tokens=500,
stop_sequences=[user_name.rstrip(), assistant_name.rstrip()],
)
for i, response in enumerate(iterator):
if response.token.special:
continue
partial_words = partial_words + response.token.text
if partial_words.endswith(user_name.rstrip()):
partial_words = partial_words.rstrip(user_name.rstrip())
if partial_words.endswith(assistant_name.rstrip()):
partial_words = partial_words.rstrip(assistant_name.rstrip())
if i == 0:
history.append(" " + partial_words)
elif response.token.text not in user_name:
history[-1] = partial_words
chat = [
(history[i].strip(), history[i + 1].strip())
for i in range(0, len(history) - 1, 2)
]
yield chat, history
def reset_textbox():
return gr.update(value="")
def radio_on_change(
value: str,
disclaimer,
typical_p,
top_p,
top_k,
temperature,
repetition_penalty,
watermark,
):
if value == "OpenAssistant/oasst-sft-1-pythia-12b":
typical_p = typical_p.update(value=0.2, visible=True)
top_p = top_p.update(visible=False)
top_k = top_k.update(visible=False)
temperature = temperature.update(visible=False)
disclaimer = disclaimer.update(visible=False)
repetition_penalty = repetition_penalty.update(visible=False)
watermark = watermark.update(False)
elif value == "togethercomputer/GPT-NeoXT-Chat-Base-20B":
typical_p = typical_p.update(visible=False)
top_p = top_p.update(value=0.25, visible=True)
top_k = top_k.update(value=50, visible=True)
temperature = temperature.update(value=0.6, visible=True)
repetition_penalty = repetition_penalty.update(value=1.01, visible=True)
watermark = watermark.update(False)
disclaimer = disclaimer.update(visible=True)
else:
typical_p = typical_p.update(visible=False)
top_p = top_p.update(value=0.95, visible=True)
top_k = top_k.update(value=4, visible=True)
temperature = temperature.update(value=0.5, visible=True)
repetition_penalty = repetition_penalty.update(value=1.03, visible=True)
watermark = watermark.update(True)
disclaimer = disclaimer.update(visible=False)
return (
disclaimer,
typical_p,
top_p,
top_k,
temperature,
repetition_penalty,
watermark,
)
title = """<h2 align="center">MultiSource ChatBot</h2><h3 align="center"> CloudQI Test Interface </h3>"""
description = """Os modelos de linguagem podem ser condicionados a agir como agentes de diálogo por meio de um prompt de conversação que normalmente assume a forma:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
"""
openchat_disclaimer = """
<div align="center">Checkout the official <a href=https://huggingface.co/spaces/togethercomputer/OpenChatKit>OpenChatKit feedback app</a> for the full experience.</div>
"""
with gr.Blocks(
css="""#col_container {margin-left: auto; margin-right: auto;}
#chatbot {height: 520px; overflow: auto;}"""
) as demo:
gr.HTML(title)
with gr.Column(elem_id="col_container"):
model = gr.Radio(
value="OpenAssistant/oasst-sft-1-pythia-12b",
choices=[
"OpenAssistant/oasst-sft-1-pythia-12b",
"togethercomputer/GPT-NeoXT-Chat-Base-20B",
"Rallio67/joi2_20Be_instruct_alpha",
"google/flan-t5-xxl",
"google/flan-ul2",
"bigscience/bloom",
"bigscience/bloomz",
"EleutherAI/gpt-neox-20b",
],
label="Model",
interactive=True,
)
chatbot = gr.Chatbot(elem_id="chatbot")
inputs = gr.Textbox(
placeholder="Olá!", label="Insira seu texto e aperte Enter"
)
disclaimer = gr.Markdown(openchat_disclaimer, visible=False)
state = gr.State([])
b1 = gr.Button()
with gr.Accordion("Parameters", open=False):
typical_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.2,
step=0.05,
interactive=True,
label="Typical P mass",
)
top_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.25,
step=0.05,
interactive=True,
label="Top-p (nucleus sampling)",
visible=False,
)
temperature = gr.Slider(
minimum=-0,
maximum=5.0,
value=0.6,
step=0.1,
interactive=True,
label="Temperature",
visible=False,
)
top_k = gr.Slider(
minimum=1,
maximum=50,
value=50,
step=1,
interactive=True,
label="Top-k",
visible=False,
)
repetition_penalty = gr.Slider(
minimum=0.1,
maximum=3.0,
value=1.03,
step=0.01,
interactive=True,
label="Repetition Penalty",
visible=False,
)
watermark = gr.Checkbox(value=False, label="Text watermarking")
hf_token_input = gr.inputs.Textbox(label="HF Token")
joi_api_url_input = gr.inputs.Textbox(label="JOI API URL")
openchat_api_url_input = gr.inputs.Textbox(label="OPENCHAT API URL")
model.change(
lambda value: radio_on_change(
value,
disclaimer,
typical_p,
top_p,
top_k,
temperature,
repetition_penalty,
watermark,
),
inputs=model,
outputs=[
disclaimer,
typical_p,
top_p,
top_k,
temperature,
repetition_penalty,
watermark,
],
)
inputs.submit(
predict,
[
model,
inputs,
typical_p,
top_p,
temperature,
top_k,
repetition_penalty,
watermark,
chatbot,
state,
],
[chatbot, state],
)
b1.click(
predict,
[
model,
inputs,
typical_p,
top_p,
temperature,
top_k,
repetition_penalty,
watermark,
chatbot,
state,
],
[chatbot, state],
)
b1.click(reset_textbox, [], [inputs])
inputs.submit(reset_textbox, [], [inputs])
gr.Markdown(description)
demo.queue(concurrency_count=16).launch(debug=True)
|