Spaces:
Running
Running
divimund95
commited on
Commit
•
cc8944c
1
Parent(s):
6faa2d6
Add Big-LaMa model exported with CoreMLtools
Browse files
LaMa.mlpackage/Data/com.apple.CoreML/model.mlmodel
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:289f2c611bd3e52805ee3e686e290981d96d3b9674db93fe6bf30962f7e60d87
|
3 |
+
size 1166404
|
LaMa.mlpackage/Data/com.apple.CoreML/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aae26da8deca02ead81120f1d683b6c38361cd593c5a685e543c4b84726500e1
|
3 |
+
size 204086656
|
LaMa.mlpackage/Manifest.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"fileFormatVersion": "1.0.0",
|
3 |
+
"itemInfoEntries": {
|
4 |
+
"058403EC-D454-47EC-9C08-D1149DC8311C": {
|
5 |
+
"author": "com.apple.CoreML",
|
6 |
+
"description": "CoreML Model Specification",
|
7 |
+
"name": "model.mlmodel",
|
8 |
+
"path": "com.apple.CoreML/model.mlmodel"
|
9 |
+
},
|
10 |
+
"BCCB46DC-D6B9-4B28-8D24-B59CF8160E49": {
|
11 |
+
"author": "com.apple.CoreML",
|
12 |
+
"description": "CoreML Model Weights",
|
13 |
+
"name": "weights",
|
14 |
+
"path": "com.apple.CoreML/weights"
|
15 |
+
}
|
16 |
+
},
|
17 |
+
"rootModelIdentifier": "058403EC-D454-47EC-9C08-D1149DC8311C"
|
18 |
+
}
|
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import coremltools as ct
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
|
7 |
+
# Load the model
|
8 |
+
coreml_model_file_name = "LaMa.mlpackage"
|
9 |
+
loaded_model = ct.models.MLModel(coreml_model_file_name)
|
10 |
+
|
11 |
+
def inpaint(input_dict):
|
12 |
+
# Resize input image and mask to 800x800
|
13 |
+
input_image = input_dict["background"].convert("RGB").resize((800, 800), Image.LANCZOS)
|
14 |
+
input_mask = pil_to_binary_mask(input_dict['layers'][0].resize((800, 800), Image.NEAREST))
|
15 |
+
|
16 |
+
# Convert mask to grayscale
|
17 |
+
input_mask = input_mask.convert("L")
|
18 |
+
|
19 |
+
# Run inference
|
20 |
+
prediction = loaded_model.predict({"image": input_image, "mask": input_mask})
|
21 |
+
|
22 |
+
# Access the output
|
23 |
+
output_image = prediction["output"]
|
24 |
+
|
25 |
+
return output_image, input_mask
|
26 |
+
|
27 |
+
def pil_to_binary_mask(pil_image, threshold=0):
|
28 |
+
np_image = np.array(pil_image)
|
29 |
+
grayscale_image = Image.fromarray(np_image).convert("L")
|
30 |
+
binary_mask = np.array(grayscale_image) > threshold
|
31 |
+
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
32 |
+
for i in range(binary_mask.shape[0]):
|
33 |
+
for j in range(binary_mask.shape[1]):
|
34 |
+
if binary_mask[i,j] == True :
|
35 |
+
mask[i,j] = 1
|
36 |
+
mask = (mask*255).astype(np.uint8)
|
37 |
+
output_mask = Image.fromarray(mask)
|
38 |
+
return output_mask
|
39 |
+
|
40 |
+
# Create Gradio interface
|
41 |
+
with gr.Blocks() as demo:
|
42 |
+
gr.Markdown("# Image Inpainting")
|
43 |
+
gr.Markdown("Upload an image and draw a mask to remove unwanted objects.")
|
44 |
+
|
45 |
+
with gr.Row():
|
46 |
+
input_image = gr.ImageEditor(type="pil", label='Input image & Mask', interactive=True)
|
47 |
+
output_image = gr.Image(type="pil", label="Output Image")
|
48 |
+
with gr.Column():
|
49 |
+
masked_image = gr.Image(label="Masked image", type="pil")
|
50 |
+
|
51 |
+
inpaint_button = gr.Button("Inpaint")
|
52 |
+
inpaint_button.click(fn=inpaint, inputs=[input_image], outputs=[output_image, masked_image])
|
53 |
+
|
54 |
+
# Launch the interface
|
55 |
+
if __name__ == "__main__":
|
56 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
coremltools
|
3 |
+
numpy
|
4 |
+
pillow
|