Spaces:
Runtime error
Runtime error
File size: 1,745 Bytes
d4f8fc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
# Evaluation
Evaluation is a process that takes a number of inputs/outputs pairs and aggregate them.
You can always [use the model](./models.md) directly and just parse its inputs/outputs manually to perform
evaluation.
Alternatively, evaluation is implemented in detectron2 using the [DatasetEvaluator](../modules/evaluation.html#detectron2.evaluation.DatasetEvaluator)
interface.
Detectron2 includes a few `DatasetEvaluator` that computes metrics using standard dataset-specific
APIs (e.g., COCO, LVIS).
You can also implement your own `DatasetEvaluator` that performs some other jobs
using the inputs/outputs pairs.
For example, to count how many instances are detected on the validation set:
```
class Counter(DatasetEvaluator):
def reset(self):
self.count = 0
def process(self, inputs, outputs):
for output in outputs:
self.count += len(output["instances"])
def evaluate(self):
# save self.count somewhere, or print it, or return it.
return {"count": self.count}
```
Once you have some `DatasetEvaluator`, you can run it with
[inference_on_dataset](../modules/evaluation.html#detectron2.evaluation.inference_on_dataset).
For example,
```python
val_results = inference_on_dataset(
model,
val_data_loader,
DatasetEvaluators([COCOEvaluator(...), Counter()]))
```
Compared to running the evaluation manually using the model, the benefit of this function is that
you can merge evaluators together using [DatasetEvaluators](../modules/evaluation.html#detectron2.evaluation.DatasetEvaluators).
In this way you can run all evaluations without having to go through the dataset multiple times.
The `inference_on_dataset` function also provides accurate speed benchmarks for the
given model and dataset.
|