Spaces:
Runtime error
Runtime error
File size: 14,194 Bytes
d4f8fc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@Author : Peike Li
@Contact : peike.li@yahoo.com
@File : AugmentCE2P.py
@Time : 8/4/19 3:35 PM
@Desc :
@License : This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import functools
import pdb
import torch
import torch.nn as nn
from torch.nn import functional as F
# Note here we adopt the InplaceABNSync implementation from https://github.com/mapillary/inplace_abn
# By default, the InplaceABNSync module contains a BatchNorm Layer and a LeakyReLu layer
from modules import InPlaceABNSync
import numpy as np
BatchNorm2d = functools.partial(InPlaceABNSync, activation='none')
affine_par = True
pretrained_settings = {
'resnet101': {
'imagenet': {
'input_space': 'BGR',
'input_size': [3, 224, 224],
'input_range': [0, 1],
'mean': [0.406, 0.456, 0.485],
'std': [0.225, 0.224, 0.229],
'num_classes': 1000
}
},
}
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, fist_dilation=1, multi_grid=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=dilation * multi_grid, dilation=dilation * multi_grid, bias=False)
self.bn2 = BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=False)
self.relu_inplace = nn.ReLU(inplace=True)
self.downsample = downsample
self.dilation = dilation
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out = out + residual
out = self.relu_inplace(out)
return out
class CostomAdaptiveAvgPool2D(nn.Module):
def __init__(self, output_size):
super(CostomAdaptiveAvgPool2D, self).__init__()
self.output_size = output_size
def forward(self, x):
H_in, W_in = x.shape[-2:]
H_out, W_out = self.output_size
out_i = []
for i in range(H_out):
out_j = []
for j in range(W_out):
hs = int(np.floor(i * H_in / H_out))
he = int(np.ceil((i + 1) * H_in / H_out))
ws = int(np.floor(j * W_in / W_out))
we = int(np.ceil((j + 1) * W_in / W_out))
# print(hs, he, ws, we)
kernel_size = [he - hs, we - ws]
out = F.avg_pool2d(x[:, :, hs:he, ws:we], kernel_size)
out_j.append(out)
out_j = torch.concat(out_j, -1)
out_i.append(out_j)
out_i = torch.concat(out_i, -2)
return out_i
class PSPModule(nn.Module):
"""
Reference:
Zhao, Hengshuang, et al. *"Pyramid scene parsing network."*
"""
def __init__(self, features, out_features=512, sizes=(1, 2, 3, 6)):
super(PSPModule, self).__init__()
self.stages = []
tmp = []
for size in sizes:
if size == 3 or size == 6:
tmp.append(self._make_stage_custom(features, out_features, size))
else:
tmp.append(self._make_stage(features, out_features, size))
self.stages = nn.ModuleList(tmp)
# self.stages = nn.ModuleList([self._make_stage(features, out_features, size) for size in sizes])
self.bottleneck = nn.Sequential(
nn.Conv2d(features + len(sizes) * out_features, out_features, kernel_size=3, padding=1, dilation=1,
bias=False),
InPlaceABNSync(out_features),
)
def _make_stage(self, features, out_features, size):
prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False)
bn = InPlaceABNSync(out_features)
return nn.Sequential(prior, conv, bn)
def _make_stage_custom(self, features, out_features, size):
prior = CostomAdaptiveAvgPool2D(output_size=(size, size))
conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False)
bn = InPlaceABNSync(out_features)
return nn.Sequential(prior, conv, bn)
def forward(self, feats):
h, w = feats.size(2), feats.size(3)
priors = [F.interpolate(input=stage(feats), size=(h, w), mode='bilinear', align_corners=True) for stage in
self.stages] + [feats]
bottle = self.bottleneck(torch.cat(priors, 1))
return bottle
class ASPPModule(nn.Module):
"""
Reference:
Chen, Liang-Chieh, et al. *"Rethinking Atrous Convolution for Semantic Image Segmentation."*
"""
def __init__(self, features, inner_features=256, out_features=512, dilations=(12, 24, 36)):
super(ASPPModule, self).__init__()
self.conv1 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1,
bias=False),
InPlaceABNSync(inner_features))
self.conv2 = nn.Sequential(
nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(inner_features))
self.conv3 = nn.Sequential(
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[0], dilation=dilations[0], bias=False),
InPlaceABNSync(inner_features))
self.conv4 = nn.Sequential(
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[1], dilation=dilations[1], bias=False),
InPlaceABNSync(inner_features))
self.conv5 = nn.Sequential(
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[2], dilation=dilations[2], bias=False),
InPlaceABNSync(inner_features))
self.bottleneck = nn.Sequential(
nn.Conv2d(inner_features * 5, out_features, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(out_features),
nn.Dropout2d(0.1)
)
def forward(self, x):
_, _, h, w = x.size()
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)
feat5 = self.conv5(x)
out = torch.cat((feat1, feat2, feat3, feat4, feat5), 1)
bottle = self.bottleneck(out)
return bottle
class Edge_Module(nn.Module):
"""
Edge Learning Branch
"""
def __init__(self, in_fea=[256, 512, 1024], mid_fea=256, out_fea=2):
super(Edge_Module, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_fea[0], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(mid_fea)
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_fea[1], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(mid_fea)
)
self.conv3 = nn.Sequential(
nn.Conv2d(in_fea[2], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(mid_fea)
)
self.conv4 = nn.Conv2d(mid_fea, out_fea, kernel_size=3, padding=1, dilation=1, bias=True)
self.conv5 = nn.Conv2d(out_fea * 3, out_fea, kernel_size=1, padding=0, dilation=1, bias=True)
def forward(self, x1, x2, x3):
_, _, h, w = x1.size()
edge1_fea = self.conv1(x1)
edge1 = self.conv4(edge1_fea)
edge2_fea = self.conv2(x2)
edge2 = self.conv4(edge2_fea)
edge3_fea = self.conv3(x3)
edge3 = self.conv4(edge3_fea)
edge2_fea = F.interpolate(edge2_fea, size=(h, w), mode='bilinear', align_corners=True)
edge3_fea = F.interpolate(edge3_fea, size=(h, w), mode='bilinear', align_corners=True)
edge2 = F.interpolate(edge2, size=(h, w), mode='bilinear', align_corners=True)
edge3 = F.interpolate(edge3, size=(h, w), mode='bilinear', align_corners=True)
edge = torch.cat([edge1, edge2, edge3], dim=1)
edge_fea = torch.cat([edge1_fea, edge2_fea, edge3_fea], dim=1)
edge = self.conv5(edge)
return edge, edge_fea
class Decoder_Module(nn.Module):
"""
Parsing Branch Decoder Module.
"""
def __init__(self, num_classes):
super(Decoder_Module, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(256)
)
self.conv2 = nn.Sequential(
nn.Conv2d(256, 48, kernel_size=1, stride=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(48)
)
self.conv3 = nn.Sequential(
nn.Conv2d(304, 256, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(256),
nn.Conv2d(256, 256, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(256)
)
self.conv4 = nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True)
def forward(self, xt, xl):
_, _, h, w = xl.size()
xt = F.interpolate(self.conv1(xt), size=(h, w), mode='bilinear', align_corners=True)
xl = self.conv2(xl)
x = torch.cat([xt, xl], dim=1)
x = self.conv3(x)
seg = self.conv4(x)
return seg, x
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes):
self.inplanes = 128
super(ResNet, self).__init__()
self.conv1 = conv3x3(3, 64, stride=2)
self.bn1 = BatchNorm2d(64)
self.relu1 = nn.ReLU(inplace=False)
self.conv2 = conv3x3(64, 64)
self.bn2 = BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=False)
self.conv3 = conv3x3(64, 128)
self.bn3 = BatchNorm2d(128)
self.relu3 = nn.ReLU(inplace=False)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=2, multi_grid=(1, 1, 1))
self.context_encoding = PSPModule(2048, 512)
self.edge = Edge_Module()
self.decoder = Decoder_Module(num_classes)
self.fushion = nn.Sequential(
nn.Conv2d(1024, 256, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(256),
nn.Dropout2d(0.1),
nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True)
)
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, multi_grid=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
BatchNorm2d(planes * block.expansion, affine=affine_par))
layers = []
generate_multi_grid = lambda index, grids: grids[index % len(grids)] if isinstance(grids, tuple) else 1
layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample,
multi_grid=generate_multi_grid(0, multi_grid)))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(
block(self.inplanes, planes, dilation=dilation, multi_grid=generate_multi_grid(i, multi_grid)))
return nn.Sequential(*layers)
def forward(self, x):
x = self.relu1(self.bn1(self.conv1(x)))
x = self.relu2(self.bn2(self.conv2(x)))
x = self.relu3(self.bn3(self.conv3(x)))
x = self.maxpool(x)
x2 = self.layer1(x)
x3 = self.layer2(x2)
x4 = self.layer3(x3)
x5 = self.layer4(x4)
x = self.context_encoding(x5)
parsing_result, parsing_fea = self.decoder(x, x2)
# Edge Branch
edge_result, edge_fea = self.edge(x2, x3, x4)
# Fusion Branch
x = torch.cat([parsing_fea, edge_fea], dim=1)
fusion_result = self.fushion(x)
return [[parsing_result, fusion_result], edge_result]
def initialize_pretrained_model(model, settings, pretrained='./models/resnet101-imagenet.pth'):
model.input_space = settings['input_space']
model.input_size = settings['input_size']
model.input_range = settings['input_range']
model.mean = settings['mean']
model.std = settings['std']
if pretrained is not None:
saved_state_dict = torch.load(pretrained)
new_params = model.state_dict().copy()
for i in saved_state_dict:
i_parts = i.split('.')
if not i_parts[0] == 'fc':
new_params['.'.join(i_parts[0:])] = saved_state_dict[i]
model.load_state_dict(new_params)
def resnet101(num_classes=20, pretrained='./models/resnet101-imagenet.pth'):
model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes)
settings = pretrained_settings['resnet101']['imagenet']
initialize_pretrained_model(model, settings, pretrained)
return model
|