AI-or-Not-v2 / app.py
cmckinle's picture
Update app.py
3ecd307 verified
import gradio as gr
import torch
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
import os
from numpy import exp
import pandas as pd
from PIL import Image
import urllib.request
import uuid
uid = uuid.uuid4()
# Reordered models as requested
models = [
"umm-maybe/AI-image-detector",
"Organika/sdxl-detector",
"cmckinle/sdxl-flux-detector",
]
pipe0 = pipeline("image-classification", f"{models[0]}")
pipe1 = pipeline("image-classification", f"{models[1]}")
pipe2 = pipeline("image-classification", f"{models[2]}")
fin_sum = []
def softmax(vector):
e = exp(vector - vector.max()) # for numerical stability
return e / e.sum()
def image_classifier0(image):
labels = ["AI", "Real"]
outputs = pipe0(image)
results = {}
for idx, result in enumerate(outputs):
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
fin_sum.append(results)
return results
def image_classifier1(image):
labels = ["AI", "Real"]
outputs = pipe1(image)
results = {}
for idx, result in enumerate(outputs):
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
fin_sum.append(results)
return results
def image_classifier2(image):
labels = ["AI", "Real"]
outputs = pipe2(image)
results = {}
for idx, result in enumerate(outputs):
results[labels[idx]] = float(outputs[idx]['score']) # Convert to float
fin_sum.append(results)
return results
def aiornot0(image):
labels = ["AI", "Real"]
mod = models[0]
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
model0 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor0(image, return_tensors="pt")
with torch.no_grad():
outputs = model0(**input)
logits = outputs.logits
probability = softmax(logits) # Apply softmax on logits
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h1>This image is likely: {label}</h1><br><h3>
Probabilities:<br>
Real: {float(px[1][0])}<br>
AI: {float(px[0][0])}"""
results = {
"Real": float(px[1][0]),
"AI": float(px[0][0])
}
fin_sum.append(results)
return gr.HTML.update(html_out), results
def aiornot1(image):
labels = ["AI", "Real"]
mod = models[1]
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
model1 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor1(image, return_tensors="pt")
with torch.no_grad():
outputs = model1(**input)
logits = outputs.logits
probability = softmax(logits) # Apply softmax on logits
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h1>This image is likely: {label}</h1><br><h3>
Probabilities:<br>
Real: {float(px[1][0])}<br>
AI: {float(px[0][0])}"""
results = {
"Real": float(px[1][0]),
"AI": float(px[0][0])
}
fin_sum.append(results)
return gr.HTML.update(html_out), results
def aiornot2(image):
labels = ["AI", "Real"]
mod = models[2]
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
model2 = AutoModelForImageClassification.from_pretrained(mod)
input = feature_extractor2(image, return_tensors="pt")
with torch.no_grad():
outputs = model2(**input)
logits = outputs.logits
probability = softmax(logits) # Apply softmax on logits
px = pd.DataFrame(probability.numpy())
prediction = logits.argmax(-1).item()
label = labels[prediction]
html_out = f"""
<h1>This image is likely: {label}</h1><br><h3>
Probabilities:<br>
Real: {float(px[1][0])}<br>
AI: {float(px[0][0])}"""
results = {
"Real": float(px[1][0]),
"AI": float(px[0][0])
}
fin_sum.append(results)
return gr.HTML.update(html_out), results
def load_url(url):
try:
urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png")
image = Image.open(f"{uid}tmp_im.png")
mes = "Image Loaded"
except Exception as e:
image = None
mes = f"Image not Found<br>Error: {e}"
return image, mes
def tot_prob():
try:
fin_out = sum([result["Real"] for result in fin_sum]) / len(fin_sum)
fin_sub = 1 - fin_out
out = {
"Real": f"{fin_out}",
"AI": f"{fin_sub}"
}
return out
except Exception as e:
print(e)
return None
def fin_clear():
fin_sum.clear()
return None
def upd(image):
rand_im = uuid.uuid4()
image.save(f"{rand_im}-vid_tmp_proc.png")
out = Image.open(f"{rand_im}-vid_tmp_proc.png")
return out
with gr.Blocks() as app:
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""")
with gr.Column():
inp = gr.Image(type='pil')
in_url = gr.Textbox(label="Image URL")
with gr.Row():
load_btn = gr.Button("Load URL")
btn = gr.Button("Detect AI")
mes = gr.HTML("""""")
with gr.Group():
with gr.Row():
fin = gr.Label(label="Final Probability", visible=False)
with gr.Row():
# Updated model names
with gr.Box():
lab0 = gr.HTML(f"""<b>Testing on Original Model: <a href='https://huggingface.co/{models[0]}'>{models[0]}</a></b>""")
nun0 = gr.HTML("""""")
with gr.Box():
lab1 = gr.HTML(f"""<b>Testing on SDXL Fine Tuned Model: <a href='https://huggingface.co/{models[1]}'>{models[1]}</a></b>""")
nun1 = gr.HTML("""""")
with gr.Box():
lab2 = gr.HTML(f"""<b>Testing on SDXL and Flux Fine Tuned Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""")
nun2 = gr.HTML("""""")
with gr.Row():
with gr.Box():
n_out0 = gr.Label(label="Output")
outp0 = gr.HTML("""""")
with gr.Box():
n_out1 = gr.Label(label="Output")
outp1 = gr.HTML("""""")
with gr.Box():
n_out2 = gr.Label(label="Output")
outp2 = gr.HTML("""""")
btn.click(fin_clear, None, fin, show_progress=False)
load_btn.click(load_url, in_url, [inp, mes])
btn.click(aiornot0, [inp], [outp0, n_out0]).then(tot_prob, None, fin, show_progress=False)
btn.click(aiornot1, [inp], [outp1, n_out1]).then(tot_prob, None, fin, show_progress=False)
btn.click(aiornot2, [inp], [outp2, n_out2]).then(tot_prob, None, fin, show_progress=False)
btn.click(image_classifier0, [inp], [n_out0]).then(tot_prob, None, fin, show_progress=False)
btn.click(image_classifier1, [inp], [n_out1]).then(tot_prob, None, fin, show_progress=False)
btn.click(image_classifier2, [inp], [n_out2]).then(tot_prob, None, fin, show_progress=False)
app.launch(show_api=False, max_threads=24)