Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,12 @@ import torch
|
|
3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
4 |
from numpy import exp
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def softmax(vector):
|
8 |
e = exp(vector)
|
@@ -15,7 +21,7 @@ models=[
|
|
15 |
"arnolfokam/ai-generated-image-detector",
|
16 |
|
17 |
]
|
18 |
-
|
19 |
def aiornot0(image):
|
20 |
labels = ["Real", "AI"]
|
21 |
mod=models[0]
|
@@ -31,8 +37,7 @@ def aiornot0(image):
|
|
31 |
label = labels[prediction]
|
32 |
html_out = f"""
|
33 |
<h1>This image is likely: {label}</h1><br><h3>
|
34 |
-
|
35 |
-
<br>
|
36 |
Probabilites:<br>
|
37 |
Real: {px[0][0]}<br>
|
38 |
AI: {px[1][0]}"""
|
@@ -56,8 +61,7 @@ def aiornot1(image):
|
|
56 |
label = labels[prediction]
|
57 |
html_out = f"""
|
58 |
<h1>This image is likely: {label}</h1><br><h3>
|
59 |
-
|
60 |
-
<br>
|
61 |
Probabilites:<br>
|
62 |
Real: {px[0][0]}<br>
|
63 |
AI: {px[1][0]}"""
|
@@ -81,8 +85,7 @@ def aiornot2(image):
|
|
81 |
label = labels[prediction]
|
82 |
html_out = f"""
|
83 |
<h1>This image is likely: {label}</h1><br><h3>
|
84 |
-
|
85 |
-
<br>
|
86 |
Probabilites:<br>
|
87 |
Real: {px[1][0]}<br>
|
88 |
AI: {px[0][0]}"""
|
@@ -92,26 +95,45 @@ def aiornot2(image):
|
|
92 |
results[labels[idx]] = px[idx][0]
|
93 |
#results[labels['label']] = result['score']
|
94 |
return gr.HTML.update(html_out),results
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
with gr.Blocks() as app:
|
97 |
-
with gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
inp = gr.Pil()
|
99 |
-
btn = gr.Button()
|
100 |
with gr.Group():
|
101 |
with gr.Row():
|
102 |
with gr.Box():
|
103 |
-
lab0 = gr.HTML(f"""<b>Testing on Model: {models[0]}</b>""")
|
104 |
-
outp0 = gr.HTML("""""")
|
105 |
n_out0=gr.Label(label="Output")
|
|
|
106 |
with gr.Box():
|
107 |
-
lab1 = gr.HTML(f"""<b>Testing on Model: {models[1]}</b>""")
|
108 |
-
outp1 = gr.HTML("""""")
|
109 |
n_out1=gr.Label(label="Output")
|
|
|
110 |
with gr.Box():
|
111 |
-
lab2 = gr.HTML(f"""<b>Testing on Model: {models[2]}</b>""")
|
112 |
-
outp2 = gr.HTML("""""")
|
113 |
n_out2=gr.Label(label="Output")
|
|
|
|
|
|
|
114 |
btn.click(aiornot0,[inp],[outp0,n_out0])
|
115 |
btn.click(aiornot1,[inp],[outp1,n_out1])
|
116 |
btn.click(aiornot2,[inp],[outp2,n_out2])
|
117 |
-
|
|
|
|
3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
4 |
from numpy import exp
|
5 |
import pandas as pd
|
6 |
+
from PIL import Image
|
7 |
+
import urllib.request
|
8 |
+
import uuid
|
9 |
+
uid=uuid.uuid4()
|
10 |
+
|
11 |
+
|
12 |
|
13 |
def softmax(vector):
|
14 |
e = exp(vector)
|
|
|
21 |
"arnolfokam/ai-generated-image-detector",
|
22 |
|
23 |
]
|
24 |
+
|
25 |
def aiornot0(image):
|
26 |
labels = ["Real", "AI"]
|
27 |
mod=models[0]
|
|
|
37 |
label = labels[prediction]
|
38 |
html_out = f"""
|
39 |
<h1>This image is likely: {label}</h1><br><h3>
|
40 |
+
|
|
|
41 |
Probabilites:<br>
|
42 |
Real: {px[0][0]}<br>
|
43 |
AI: {px[1][0]}"""
|
|
|
61 |
label = labels[prediction]
|
62 |
html_out = f"""
|
63 |
<h1>This image is likely: {label}</h1><br><h3>
|
64 |
+
|
|
|
65 |
Probabilites:<br>
|
66 |
Real: {px[0][0]}<br>
|
67 |
AI: {px[1][0]}"""
|
|
|
85 |
label = labels[prediction]
|
86 |
html_out = f"""
|
87 |
<h1>This image is likely: {label}</h1><br><h3>
|
88 |
+
|
|
|
89 |
Probabilites:<br>
|
90 |
Real: {px[1][0]}<br>
|
91 |
AI: {px[0][0]}"""
|
|
|
95 |
results[labels[idx]] = px[idx][0]
|
96 |
#results[labels['label']] = result['score']
|
97 |
return gr.HTML.update(html_out),results
|
98 |
+
|
99 |
+
def load_url(url):
|
100 |
+
try:
|
101 |
+
urllib.request.urlretrieve(
|
102 |
+
f'{url}',
|
103 |
+
f"{uid}tmp_im.png")
|
104 |
+
image = Image.open(f"{uid}tmp_im.png")
|
105 |
+
mes = "Image Loaded"
|
106 |
+
except Exception as e:
|
107 |
+
image=None
|
108 |
+
mes=f"Image not Found<br>Error: {e}"
|
109 |
+
return image,mes
|
110 |
with gr.Blocks() as app:
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
in_url=gr.Textbox(label="Image URL")
|
114 |
+
with gr.Row():
|
115 |
+
load_btn=gr.Button("Load URL")
|
116 |
+
btn = gr.Button("Detect AI")
|
117 |
+
mes = gr.HTML("""""")
|
118 |
inp = gr.Pil()
|
|
|
119 |
with gr.Group():
|
120 |
with gr.Row():
|
121 |
with gr.Box():
|
122 |
+
lab0 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[0]}'>{models[0]}</a></b>""")
|
|
|
123 |
n_out0=gr.Label(label="Output")
|
124 |
+
outp0 = gr.HTML("""""")
|
125 |
with gr.Box():
|
126 |
+
lab1 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[1]}'>{models[1]}</a></b>""")
|
|
|
127 |
n_out1=gr.Label(label="Output")
|
128 |
+
outp1 = gr.HTML("""""")
|
129 |
with gr.Box():
|
130 |
+
lab2 = gr.HTML(f"""<b>Testing on Model: <a href='https://huggingface.co/{models[2]}'>{models[2]}</a></b>""")
|
|
|
131 |
n_out2=gr.Label(label="Output")
|
132 |
+
outp2 = gr.HTML("""""")
|
133 |
+
|
134 |
+
load_btn.click(load_url,in_url,[inp,mes])
|
135 |
btn.click(aiornot0,[inp],[outp0,n_out0])
|
136 |
btn.click(aiornot1,[inp],[outp1,n_out1])
|
137 |
btn.click(aiornot2,[inp],[outp2,n_out2])
|
138 |
+
|
139 |
+
app.queue(concurrency_count=20).launch()
|