Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
|
|
|
|
4 |
from numpy import exp
|
5 |
import pandas as pd
|
6 |
from PIL import Image
|
@@ -8,20 +10,64 @@ import urllib.request
|
|
8 |
import uuid
|
9 |
uid=uuid.uuid4()
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def softmax(vector):
|
14 |
e = exp(vector)
|
15 |
return e / e.sum()
|
16 |
|
17 |
-
|
18 |
-
models=[
|
19 |
-
"Nahrawy/AIorNot",
|
20 |
-
"umm-maybe/AI-image-detector",
|
21 |
-
"arnolfokam/ai-generated-image-detector",
|
22 |
|
23 |
-
]
|
24 |
-
fin_sum=[]
|
25 |
def aiornot0(image):
|
26 |
labels = ["Real", "AI"]
|
27 |
mod=models[0]
|
@@ -39,8 +85,8 @@ def aiornot0(image):
|
|
39 |
<h1>This image is likely: {label}</h1><br><h3>
|
40 |
|
41 |
Probabilites:<br>
|
42 |
-
Real: {px[
|
43 |
-
AI: {px[
|
44 |
results = {}
|
45 |
for idx,result in enumerate(px):
|
46 |
results[labels[idx]] = px[idx][0]
|
@@ -48,7 +94,7 @@ def aiornot0(image):
|
|
48 |
fin_sum.append(results)
|
49 |
return gr.HTML.update(html_out),results
|
50 |
def aiornot1(image):
|
51 |
-
labels = ["
|
52 |
mod=models[1]
|
53 |
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
|
54 |
model1 = AutoModelForImageClassification.from_pretrained(mod)
|
@@ -64,8 +110,8 @@ def aiornot1(image):
|
|
64 |
<h1>This image is likely: {label}</h1><br><h3>
|
65 |
|
66 |
Probabilites:<br>
|
67 |
-
Real: {px[
|
68 |
-
AI: {px[
|
69 |
results = {}
|
70 |
for idx,result in enumerate(px):
|
71 |
results[labels[idx]] = px[idx][0]
|
@@ -73,9 +119,9 @@ def aiornot1(image):
|
|
73 |
fin_sum.append(results)
|
74 |
return gr.HTML.update(html_out),results
|
75 |
def aiornot2(image):
|
76 |
-
labels = ["
|
77 |
mod=models[2]
|
78 |
-
feature_extractor2 = AutoFeatureExtractor.from_pretrained(
|
79 |
model2 = AutoModelForImageClassification.from_pretrained(mod)
|
80 |
input = feature_extractor2(image, return_tensors="pt")
|
81 |
with torch.no_grad():
|
@@ -89,8 +135,8 @@ def aiornot2(image):
|
|
89 |
<h1>This image is likely: {label}</h1><br><h3>
|
90 |
|
91 |
Probabilites:<br>
|
92 |
-
Real: {px[
|
93 |
-
AI: {px[
|
94 |
|
95 |
results = {}
|
96 |
for idx,result in enumerate(px):
|
@@ -114,15 +160,15 @@ def load_url(url):
|
|
114 |
|
115 |
def tot_prob():
|
116 |
try:
|
117 |
-
fin_out = fin_sum[0]["Real"]+fin_sum[1]["Real"]+fin_sum[2]["Real"]
|
118 |
-
fin_out = fin_out/
|
119 |
fin_sub = 1-fin_out
|
120 |
out={
|
121 |
"Real":f"{fin_out}",
|
122 |
"AI":f"{fin_sub}"
|
123 |
}
|
124 |
#fin_sum.clear()
|
125 |
-
print (fin_out)
|
126 |
return out
|
127 |
except Exception as e:
|
128 |
pass
|
@@ -134,7 +180,7 @@ def fin_clear():
|
|
134 |
with gr.Blocks() as app:
|
135 |
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""")
|
136 |
with gr.Column():
|
137 |
-
inp = gr.Image(type='
|
138 |
in_url=gr.Textbox(label="Image URL")
|
139 |
with gr.Row():
|
140 |
load_btn=gr.Button("Load URL")
|
@@ -164,11 +210,36 @@ with gr.Blocks() as app:
|
|
164 |
with gr.Box():
|
165 |
n_out2=gr.Label(label="Output")
|
166 |
outp2 = gr.HTML("""""")
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
load_btn.click(load_url,in_url,[inp,mes])
|
170 |
-
btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin)
|
171 |
-
btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin)
|
172 |
-
btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin)
|
173 |
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
4 |
+
#from transformers import pipeline
|
5 |
+
import os
|
6 |
from numpy import exp
|
7 |
import pandas as pd
|
8 |
from PIL import Image
|
|
|
10 |
import uuid
|
11 |
uid=uuid.uuid4()
|
12 |
|
13 |
+
models=[
|
14 |
+
"Nahrawy/AIorNot",
|
15 |
+
"umm-maybe/AI-image-detector",
|
16 |
+
"arnolfokam/ai-generated-image-detector",
|
17 |
+
]
|
18 |
|
19 |
+
pipe0 = pipeline("image-classification", f"{models[0]}")
|
20 |
+
pipe1 = pipeline("image-classification", f"{models[1]}")
|
21 |
+
pipe2 = pipeline("image-classification", f"{models[2]}")
|
22 |
+
|
23 |
+
|
24 |
+
fin_sum=[]
|
25 |
+
def image_classifier0(image):
|
26 |
+
labels = ["AI","Real"]
|
27 |
+
outputs = pipe0(image)
|
28 |
+
results = {}
|
29 |
+
result_test={}
|
30 |
+
for idx,result in enumerate(outputs):
|
31 |
+
results[labels[idx]] = outputs[idx]['score']
|
32 |
+
#print (result_test)
|
33 |
+
#for result in outputs:
|
34 |
+
# results[result['label']] = result['score']
|
35 |
+
#print (results)
|
36 |
+
fin_sum.append(results)
|
37 |
+
return results
|
38 |
+
def image_classifier1(image):
|
39 |
+
labels = ["AI","Real"]
|
40 |
+
outputs = pipe1(image)
|
41 |
+
results = {}
|
42 |
+
result_test={}
|
43 |
+
for idx,result in enumerate(outputs):
|
44 |
+
results[labels[idx]] = outputs[idx]['score']
|
45 |
+
#print (result_test)
|
46 |
+
#for result in outputs:
|
47 |
+
# results[result['label']] = result['score']
|
48 |
+
#print (results)
|
49 |
+
fin_sum.append(results)
|
50 |
+
return results
|
51 |
+
def image_classifier2(image):
|
52 |
+
labels = ["AI","Real"]
|
53 |
+
outputs = pipe2(image)
|
54 |
+
results = {}
|
55 |
+
result_test={}
|
56 |
+
for idx,result in enumerate(outputs):
|
57 |
+
results[labels[idx]] = outputs[idx]['score']
|
58 |
+
#print (result_test)
|
59 |
+
#for result in outputs:
|
60 |
+
# results[result['label']] = result['score']
|
61 |
+
#print (results)
|
62 |
+
fin_sum.append(results)
|
63 |
+
return results
|
64 |
|
65 |
def softmax(vector):
|
66 |
e = exp(vector)
|
67 |
return e / e.sum()
|
68 |
|
69 |
+
|
|
|
|
|
|
|
|
|
70 |
|
|
|
|
|
71 |
def aiornot0(image):
|
72 |
labels = ["Real", "AI"]
|
73 |
mod=models[0]
|
|
|
85 |
<h1>This image is likely: {label}</h1><br><h3>
|
86 |
|
87 |
Probabilites:<br>
|
88 |
+
Real: {px[1][0]}<br>
|
89 |
+
AI: {px[0][0]}"""
|
90 |
results = {}
|
91 |
for idx,result in enumerate(px):
|
92 |
results[labels[idx]] = px[idx][0]
|
|
|
94 |
fin_sum.append(results)
|
95 |
return gr.HTML.update(html_out),results
|
96 |
def aiornot1(image):
|
97 |
+
labels = ["AI", "Real"]
|
98 |
mod=models[1]
|
99 |
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
|
100 |
model1 = AutoModelForImageClassification.from_pretrained(mod)
|
|
|
110 |
<h1>This image is likely: {label}</h1><br><h3>
|
111 |
|
112 |
Probabilites:<br>
|
113 |
+
Real: {px[1][0]}<br>
|
114 |
+
AI: {px[0][0]}"""
|
115 |
results = {}
|
116 |
for idx,result in enumerate(px):
|
117 |
results[labels[idx]] = px[idx][0]
|
|
|
119 |
fin_sum.append(results)
|
120 |
return gr.HTML.update(html_out),results
|
121 |
def aiornot2(image):
|
122 |
+
labels = ["Real", "AI"]
|
123 |
mod=models[2]
|
124 |
+
feature_extractor2 = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
|
125 |
model2 = AutoModelForImageClassification.from_pretrained(mod)
|
126 |
input = feature_extractor2(image, return_tensors="pt")
|
127 |
with torch.no_grad():
|
|
|
135 |
<h1>This image is likely: {label}</h1><br><h3>
|
136 |
|
137 |
Probabilites:<br>
|
138 |
+
Real: {px[0][0]}<br>
|
139 |
+
AI: {px[1][0]}"""
|
140 |
|
141 |
results = {}
|
142 |
for idx,result in enumerate(px):
|
|
|
160 |
|
161 |
def tot_prob():
|
162 |
try:
|
163 |
+
fin_out = fin_sum[0]["Real"]+fin_sum[1]["Real"]+fin_sum[2]["Real"]+fin_sum[3]["Real"]+fin_sum[4]["Real"]+fin_sum[5]["Real"]
|
164 |
+
fin_out = fin_out/6
|
165 |
fin_sub = 1-fin_out
|
166 |
out={
|
167 |
"Real":f"{fin_out}",
|
168 |
"AI":f"{fin_sub}"
|
169 |
}
|
170 |
#fin_sum.clear()
|
171 |
+
#print (fin_out)
|
172 |
return out
|
173 |
except Exception as e:
|
174 |
pass
|
|
|
180 |
with gr.Blocks() as app:
|
181 |
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)""")
|
182 |
with gr.Column():
|
183 |
+
inp = gr.Image(type='pil')
|
184 |
in_url=gr.Textbox(label="Image URL")
|
185 |
with gr.Row():
|
186 |
load_btn=gr.Button("Load URL")
|
|
|
210 |
with gr.Box():
|
211 |
n_out2=gr.Label(label="Output")
|
212 |
outp2 = gr.HTML("""""")
|
213 |
+
with gr.Row():
|
214 |
+
with gr.Box():
|
215 |
+
n_out3=gr.Label(label="Output")
|
216 |
+
outp3 = gr.HTML("""""")
|
217 |
+
with gr.Box():
|
218 |
+
n_out4=gr.Label(label="Output")
|
219 |
+
outp4 = gr.HTML("""""")
|
220 |
+
with gr.Box():
|
221 |
+
n_out5=gr.Label(label="Output")
|
222 |
+
outp5 = gr.HTML("""""")
|
223 |
+
hid_box=gr.Textbox(visible=False)
|
224 |
+
|
225 |
+
def upd(image):
|
226 |
+
rand_im = uuid.uuid4()
|
227 |
+
image.save(f"{rand_im}-vid_tmp_proc.png")
|
228 |
+
#out = os.path.abspath(f"{rand_im}-vid_tmp_proc.png")
|
229 |
+
#out_url = f'https://omnibus_AI_or_Not_dev.hf.space/file={out}'
|
230 |
+
out_url = f"{rand_im}-vid_tmp_proc.png"
|
231 |
+
return out_url
|
232 |
+
#inp.change(upd,inp,inp)
|
233 |
+
|
234 |
+
btn.click(fin_clear,None,fin,show_progress=False)
|
235 |
load_btn.click(load_url,in_url,[inp,mes])
|
|
|
|
|
|
|
236 |
|
237 |
+
btn.click(aiornot0,[inp],[outp0,n_out0]).then(tot_prob,None,fin,show_progress=False)
|
238 |
+
btn.click(aiornot1,[inp],[outp1,n_out1]).then(tot_prob,None,fin,show_progress=False)
|
239 |
+
btn.click(aiornot2,[inp],[outp2,n_out2]).then(tot_prob,None,fin,show_progress=False)
|
240 |
+
|
241 |
+
btn.click(image_classifier0,[inp],[n_out3]).then(tot_prob,None,fin,show_progress=False)
|
242 |
+
btn.click(image_classifier1,[inp],[n_out4]).then(tot_prob,None,fin,show_progress=False)
|
243 |
+
btn.click(image_classifier2,[inp],[n_out5]).then(tot_prob,None,fin,show_progress=False)
|
244 |
+
|
245 |
+
app.queue(concurrency_count=60).launch()
|