Spaces:
Runtime error
Runtime error
File size: 9,651 Bytes
c423c55 e24fbee fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 e24fbee c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 fe95067 c423c55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import re
import os
from typing import TypeVar
from functools import cache
import logging
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from peft import PeftModel
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_community.chat_models import ChatLiteLLM
from langchain.chains import LLMChain
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
PromptTemplate,
)
from langchain.schema import BaseOutputParser, OutputParserException
from message_classes import ActionType, AgentAction
from utils import format_docstring
from langchain_callback_handler import LoggingCallbackHandler
HF_TOKEN_KEY_FILE="./hf_token.key"
OutputType = TypeVar("OutputType", bound=object)
log = logging.getLogger("generate")
logging_handler = LoggingCallbackHandler("langchain")
def generate_action(
model_name: str,
history: str,
turn_number: int,
action_types: list[ActionType],
agent: str,
temperature: float = 0.7,
) -> AgentAction:
"""
Using langchain to generate an example episode
"""
try:
# Normal case, model as agent
template = """
Imagine you are {agent}, your task is to act/speak as {agent} would, keeping in mind {agent}'s social goal.
You can find {agent}'s goal (or background) in the 'Here is the context of the interaction' field.
Note that {agent}'s goal is only visible to you.
You should try your best to achieve {agent}'s goal in a way that align with their character traits.
Additionally, maintaining the conversation's naturalness and realism is essential (e.g., do not repeat what other people has already said before).
{history}.
You are at Turn #{turn_number}. Your available action types are
{action_list}.
Note: You can "leave" this conversation if 1. you have achieved your social goals, 2. this conversation makes you uncomfortable, 3. you find it uninteresting/you lose your patience, 4. or for other reasons you want to leave.
Please only generate a JSON string including the action type and the argument.
Your action should follow the given format:
{format_instructions}
"""
return generate(
model_name=model_name,
template=template,
input_values=dict(
agent=agent,
turn_number=str(turn_number),
history=history,
action_list=" ".join(action_types),
),
output_parser=PydanticOutputParser(pydantic_object=AgentAction),
temperature=temperature,
)
except Exception:
return AgentAction(action_type="none", argument="")
@cache
def prepare_model(model_name, hf_token_key_file=HF_TOKEN_KEY_FILE):
compute_type = torch.float16
if os.path.exists(hf_token_key_file):
with open (hf_token_key_file, 'r') as f:
hf_token = f.read().strip()
else:
hf_token = os.environ["HF_TOKEN"]
if model_name == 'cmu-lti/sotopia-pi-mistral-7b-BC_SR':
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", token=hf_token)
model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.1",
cache_dir="./.cache",
device_map='cuda',
token=hf_token
)
model = PeftModel.from_pretrained(model, model_name).to("cuda")
elif model_name == 'cmu-lti/sotopia-pi-mistral-7b-BC_SR_4bit':
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", token=hf_token)
model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.1",
cache_dir="./.cache",
device_map='cuda',
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=compute_type,
),
token=hf_token
)
model = PeftModel.from_pretrained(model, model_name).to("cuda")
elif model_name == 'mistralai/Mistral-7B-Instruct-v0.1':
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", token=hf_token)
model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.1",
cache_dir="./.cache",
device_map='cuda',
token=hf_token
)
else:
raise RuntimeError(f"Model {model_name} not supported")
return model, tokenizer
def obtain_chain_hf(
model_name: str,
template: str,
input_variables: list[str],
temperature: float = 0.7,
max_retries: int = 6,
max_tokens: int = 2700
) -> LLMChain:
human_message_prompt = HumanMessagePromptTemplate(
prompt=PromptTemplate(template=template, input_variables=input_variables)
)
chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])
model, tokenizer = prepare_model(model_name)
pipe = pipeline("text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=100,
temperature=temperature,
return_full_text=False,
do_sample=True,
num_beams=3,
length_penalty=-1.0,
)
hf = HuggingFacePipeline(pipeline=pipe)
chain = LLMChain(llm=hf, prompt=chat_prompt_template)
return chain
def generate(
model_name: str,
template: str,
input_values: dict[str, str],
output_parser: BaseOutputParser[OutputType],
temperature: float = 0.7,
) -> OutputType:
input_variables = re.findall(r"{(.*?)}", template)
assert (
set(input_variables) == set(list(input_values.keys()) + ["format_instructions"])
or set(input_variables) == set(list(input_values.keys()))
), f"The variables in the template must match input_values except for format_instructions. Got {sorted(input_values.keys())}, expect {sorted(input_variables)}"
# process template
template = format_docstring(template)
chain = obtain_chain(model_name, template, input_variables, temperature)
if "format_instructions" not in input_values:
input_values["format_instructions"] = output_parser.get_format_instructions()
result = chain.predict([logging_handler], **input_values)
prompt = logging_handler.retrive_prompt()
try:
parsed_result = output_parser.parse(result)
except KeyboardInterrupt:
raise KeyboardInterrupt
except Exception as e:
log.debug(
f"[red] Failed to parse result: {result}\nEncounter Exception {e}\nstart to reparse",
extra={"markup": True},
)
reformat_parsed_result = format_bad_output(
result, format_instructions=output_parser.get_format_instructions()
)
parsed_result = output_parser.parse(reformat_parsed_result)
log.info(f"Generated result: {parsed_result}")
return parsed_result
def format_bad_output(
ill_formed_output: str,
format_instructions: str,
model_name: str = "gpt-3.5-turbo",
) -> str:
template = """
Given the string that can not be parsed by json parser, reformat it to a string that can be parsed by json parser.
Original string: {ill_formed_output}
Format instructions: {format_instructions}
Please only generate the JSON:
"""
chain = obtain_chain(
model_name=model_name,
template=template,
input_variables=re.findall(r"{(.*?)}", template),
)
input_values = {
"ill_formed_output": ill_formed_output,
"format_instructions": format_instructions,
}
reformat = chain.predict([logging_handler], **input_values)
log.info(f"Reformated output: {reformat}")
return reformat
def obtain_chain(
model_name: str,
template: str,
input_variables: list[str],
temperature: float = 0.7,
max_retries: int = 6,
) -> LLMChain:
"""
Using langchain to sample profiles for participants
"""
if model_name in ["cmu-lti/sotopia-pi-mistral-7b-BC_SR", "cmu-lti/sotopia-pi-mistral-7b-BC_SR_4bit"]:
return obtain_chain_hf(
model_name=model_name,
template=template,
input_variables=input_variables,
temperature=temperature,
max_retries=max_retries,
)
model_name = _return_fixed_model_version(model_name)
chat = ChatLiteLLM(
model=model_name,
temperature=temperature,
max_tokens=2700, # tweak as needed
max_retries=max_retries,
)
human_message_prompt = HumanMessagePromptTemplate(
prompt=PromptTemplate(template=template, input_variables=input_variables)
)
chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])
chain = LLMChain(llm=chat, prompt=chat_prompt_template)
return chain
def _return_fixed_model_version(model_name: str) -> str:
return {
"gpt-3.5-turbo": "gpt-3.5-turbo-0613",
"gpt-3.5-turbo-finetuned": "ft:gpt-3.5-turbo-0613:academicscmu::8nY2zgdt",
"gpt-3.5-turbo-ft-MF": "ft:gpt-3.5-turbo-0613:academicscmu::8nuER4bO",
"gpt-4": "gpt-4-0613",
"gpt-4-turbo": "gpt-4-1106-preview",
}[model_name] |