File size: 13,311 Bytes
fe95067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import re
from typing import Literal, cast

from pydantic import BaseModel, Field

from utils import format_docstring

ActionType = Literal["none", "speak", "non-verbal communication", "action", "leave"]


class Message(BaseModel):
    """
    An interface for messages.
    There is only one required method: to_natural_language
    """

    def to_natural_language(self) -> str:
        raise NotImplementedError


class SimpleMessage(Message):
    """
    A simple message with a single string field.
    """

    message: str = Field(description="the message")

    def to_natural_language(self) -> str:
        return self.message


class Observation(Message):
    last_turn: str = Field(description="the last turn of the conversation")
    turn_number: int = Field(description="the turn number of the conversation")
    available_actions: list[ActionType] = Field(description="the available actions")

    def to_natural_language(self) -> str:
        if self.turn_number == 0:
            return f"\n{self.last_turn}\nConversation Starts:\n"
        else:
            return f"Turn #{self.turn_number-1}: {self.last_turn}\n"


class ScriptBackground(Message):
    scenario: str = Field(description="scenario of the episode")
    p1_name: str = Field(description="name of participant 1")
    p2_name: str = Field(description="name of participant 2")
    p1_background: str = Field(description="background of participant 1")
    p2_background: str = Field(description="background of participant 2")
    p1_goal: str = Field(description="goal of participant 1")
    p2_goal: str = Field(description="goal of participant 2")

    def to_natural_language(self) -> str:
        if self.p1_background or self.p2_background:
            p1_background = self.p1_background if self.p1_background else "Unknown"
            p2_background = self.p2_background if self.p2_background else "Unknown"
            # Not using AND, since in stranger relation the background is not visible
            return format_docstring(
                f"""Here is the context of this interaction:
            Scenario: {self.scenario}
            Participants: {self.p1_name} and {self.p2_name}
            {self.p1_name}'s background: {p1_background}
            {self.p2_name}'s background: {p2_background}
            {self.p1_name}'s goal: {self.p1_goal}
            {self.p2_name}'s goal: {self.p2_goal}
            """
            )
        else:
            return format_docstring(
                f"""Here is the context of this interaction:
            Scenario: {self.scenario}
            Participants: {self.p1_name} and {self.p2_name}
            {self.p1_name}'s goal: {self.p1_goal}
            {self.p2_name}'s goal: {self.p2_goal}
            """
            )


class ScriptEnvironmentResponse(Message):
    terminated: bool = Field(
        description="whether the conversation is terminated",
        default_factory=lambda: False,
    )
    p1_rate: float | tuple[float, dict[str, float]] | None = Field(
        description="rating of participant 1, on the scale of 1 to 10"
    )
    p2_rate: float | tuple[float, dict[str, float]] | None = Field(
        description="rating of participant 2, on the scale of 1 to 10"
    )
    comments: str | None = Field(
        description="All of the comments supporting the termination and rating"
    )

    def to_natural_language(self) -> str:
        reason_to_stop = format_docstring(
            f"""Environment response:
        {"The conversation is terminated." if self.terminated else ""}
        {"Rating of participant 1" + str(self.p1_rate) if self.p1_rate is not None else ""}
        {"Rating of participant 2" + str(self.p2_rate) if self.p2_rate is not None else ""}
        {self.comments if self.comments is not None else ""}
        """
        )
        clean_text = ""
        for line in reason_to_stop.split("\n"):
            if line.strip():
                clean_text += line + "\n"
        return clean_text


class AgentAction(Message):
    action_type: ActionType = Field(
        description="whether to speak at this turn or choose to not do anything"
    )
    argument: str = Field(
        description="the utterance if choose to speak, the expression or gesture if choose non-verbal communication, or the physical action if choose action"
    )

    def to_natural_language(self) -> str:
        match self.action_type:
            case "none":
                return "did nothing"
            case "speak":
                return f'said: "{self.argument}"'
            case "non-verbal communication":
                return f"[{self.action_type}] {self.argument}"
            case "action":
                return f"[{self.action_type}] {self.argument}"
            case "leave":
                return "left the conversation"


ScriptInteractionReturnType = tuple[
    list[list[tuple[str, str, Message]]], list[tuple[str, Message]]
]


class ScriptInteraction(Message):
    interactions: str = Field(
        description="""The interaction between the two participants in maximum 20 turns. Each turn is separated by a newline, and should only describe one agent. Following the structure:
        Turn #x
        [participant's name] [action] {argument for some actions}

        You can use different types of actions, but only use one in each turn. You should move other information into argument part. Below shows a python code snippet of the format for each action type:
        match self.action_type:
            case "none":
                return "did nothing"
            case "speak":
                return f'said: "{self.argument}"'
            case "non-verbal communication":
                return f"[{self.action_type}] {self.argument}"
            case "action":
                return f"[{self.action_type}] {self.argument}"
            case "leave":
                return "left the conversation"

        For example, the following is acceptable:
        Turn #x
        Oliver Thompson said: "Hey Esmeralda, what's wrong? You seem upset."
        Turn #x
        Esmeralda Solis [action] moved closer
        Turn #x
        Oliver Thompson [non-verbal communication] smiled
        Turn #x
        Esmeralda Solis did nothing
        Turn #x
        Oliver Thompson left the conversation
        Turn #x
        Esmeralda Solis [action] leaned in and lowered her voice: "Sorry"

        And the following is not acceptable:
        Turn #1
        Oliver Thompson [speak] said: "Hey Esmeralda, what's wrong? You seem upset."
        Turn #1
        Esmeralda Solis non-verbal communication moved closer
        """
    )

    def to_natural_language(self) -> str:
        return self.interactions

    def parse(
        self, agent_names: list[str], background: str
    ) -> tuple[list[list[tuple[str, str, Message]]], list[tuple[str, Message]]]:
        interaction = self.interactions
        # print("Interaction: ", interaction)
        lines = self.split_by_turn(interaction)

        agent_results = []
        results: list[list[tuple[str, str, Message]]] = [
            [
                (
                    "Environment",
                    name,
                    Observation(
                        last_turn=background,
                        turn_number=0,
                        available_actions=["none"],
                    ),
                )
                for name in agent_names
            ]
        ]

        for line_idx, line in enumerate(lines):
            try:
                res = self.parse_single_dialogue(line)
                action: AgentAction = cast(AgentAction, res["action"])
                argument: str = cast(str, res["argument"])
                cast(int, res["turn"])
                name: str = cast(str, res["name"])

                parsed_action = AgentAction(action_type=action, argument=argument)
                if name not in agent_names:
                    print(
                        f"The name of the agent, {name}, is not in the list of agent names, {agent_names}"
                    )
                    name = agent_names[
                        line_idx % 2
                    ]  # TODO Not sure what name to be set here
            except Exception as e:
                print(
                    f"Error when parsing the dialogue: {line}",
                    f"The error is: {e}",
                )
                raise e
                parsed_action = AgentAction(action_type="none", argument="")
                name = agent_names[line_idx % 2]  # TODO same question as above
            inactive_agent_name = (
                agent_names[0] if name == agent_names[1] else agent_names[1]
            )
            results.append(
                [
                    (
                        "Environment",
                        name,
                        Observation(
                            last_turn="environment is the agent",
                            turn_number=line_idx + 1,
                            available_actions=["none"],
                        ),
                    )
                    for name in agent_names
                ]
                + [
                    (name, "Environment", parsed_action),
                    (
                        inactive_agent_name,
                        "Environment",
                        AgentAction(action_type="none", argument="did nothing"),
                    ),
                ]
            )

            agent_results.append((name, parsed_action))
        # print("Parsed agent results: ", agent_results)
        return (results, agent_results)  # type: ignore

    def parse_single_dialogue(
        self, dialogue: str
    ) -> dict[str, str | int | AgentAction | None]:
        """Parse a single dialogue string and return a dictionary with turn, name, action, and argument."""

        # Match the turn number and name. Assume all agent name starts with a capital letter and is followed by lowercase letters
        match_turn_name = re.match(
            r"Turn #?(\d+):?\s*\n((?:[A-Z]['a-z]* ?)+)", dialogue
        )

        if not match_turn_name:
            raise ValueError(
                f"The dialogue does not match the expected format: {dialogue}"
            )
            return None  # TODO Which should we use, return None or raise error?

        turn, name = match_turn_name.groups()
        action_content = dialogue[
            len(match_turn_name.group(0)) :
        ].strip()  # Extract the action content

        # Check for different action types
        if "did nothing" in action_content:
            action, argument = "none", ""
        elif match := re.match(r'said: "(.*?)"', action_content):
            action, argument = "speak", match.group(1)
            action, argument = action.strip(), argument.strip()
        elif match := re.match(r'\[speak\] said: "(.*?)"', action_content):
            action, argument = "speak", match.group(1)
            action, argument = action.strip(), argument.strip()
        elif match := re.match(
            r"\[(non-verbal communication|action)\] (.*)", action_content
        ):
            action, argument = match.groups()
        elif "left the conversation" in action_content:
            # TODO Make it more elegant to handle the situation of `left the conversation.`
            action, argument = "leave", ""
        else:
            action, argument = None, None

        parsed_item = {
            "turn": int(turn),
            "name": name.strip(),
            "action": action,
            "argument": argument,
        }
        return parsed_item

    def split_by_turn(self, input_string: str) -> list[str]:
        """Split the input dialogue string by turn and return a list of dialogues."""
        # Split using 'Turn #' as delimiter, but keep the delimiter in the results
        dialogues = re.split(r"(?=Turn #?\d+)", input_string)
        # Remove any empty strings and strip whitespace
        dialogues = [dialogue.strip() for dialogue in dialogues if dialogue.strip()]
        dialogues = [dialogue for dialogue in dialogues if dialogue.startswith("Turn")]
        # Change from Turn #x to Turn (#)x (# is optional)
        dialogues[-1] = "\n".join(
            dialogues[-1].split("\n")[:2]
        )  # Discard further input in the last turn

        for dialogue in dialogues:
            # TODO this is current workaround for the issue of multiple agents in one turn
            if len(dialogue.split("\n")) >= 3:
                raise ValueError("Only one agent can act per turn.")
        return dialogues

    @staticmethod
    def default_value_for_return_type() -> ScriptInteractionReturnType:
        results_1: list[list[tuple[str, str, Message]]] = [
            [
                (
                    "Environment",
                    name,
                    Observation(
                        last_turn="Environment is the agent",
                        turn_number=0,
                        available_actions=["none"],
                    ),
                )
                for name in ["none", "none"]
            ]
        ]
        results_2: list[tuple[str, Message]] = [
            ("", AgentAction(action_type="none", argument=""))
        ]
        return (results_1, results_2)