sotopia-space / app.py
Wonderplex
Feature/select agent env (#42)
0c22348
raw
history blame
13.7 kB
import os
from collections import defaultdict
from dataclasses import dataclass
from uuid import uuid4
import json
import gradio as gr
import torch
import transformers
from peft import PeftConfig, PeftModel, get_peft_model
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from utils import Environment, Agent, format_sotopia_prompt, get_starter_prompt, format_bot_message
from functools import cache
DEPLOYED = os.getenv("DEPLOYED", "true").lower() == "true"
DEFAULT_MODEL_SELECTION = "cmu-lti/sotopia-pi-mistral-7b-BC_SR" # "mistralai/Mistral-7B-Instruct-v0.1"
TEMPERATURE = 0.0
TOP_P = 1
MAX_TOKENS = 1024
ENVIRONMENT_PROFILES = "profiles/environment_profiles.jsonl"
AGENT_PROFILES = "profiles/agent_profiles.jsonl"
RELATIONSHIP_PROFILES = "profiles/relationship_profiles.jsonl"
@cache
def get_sotopia_profiles(env_file=ENVIRONMENT_PROFILES, agent_file=AGENT_PROFILES, relationship_file=RELATIONSHIP_PROFILES):
with open(env_file, 'r') as f:
data = [json.loads(line) for line in f.readlines()]
code_names_count = defaultdict(int)
environments = []
environment_dict = {}
for profile in sorted(data, key=lambda x: x['codename']):
env_obj = Environment(profile)
if profile['codename'] in code_names_count:
environments.append((
"{}_{:05d}".format(profile['codename'],
code_names_count[profile['codename']]
),
env_obj._id
))
else:
environments.append((profile['codename'], env_obj._id))
environment_dict[env_obj._id] = env_obj
code_names_count[profile['codename']] += 1
with open(agent_file, 'r') as f:
data = [json.loads(line) for line in f.readlines()]
agent_dict = {}
for profile in data:
agent_obj = Agent(profile)
agent_dict[agent_obj._id] = agent_obj
with open(relationship_file, 'r') as f:
data = [json.loads(line) for line in f.readlines()]
relationship_dict = defaultdict(lambda : defaultdict(list))
for profile in data:
relationship_dict[profile['relationship']][profile['agent1_id']].append(profile['agent2_id'])
relationship_dict[profile['relationship']][profile['agent2_id']].append(profile['agent1_id'])
return environments, environment_dict, agent_dict, relationship_dict
@cache
def prepare_model(model_name):
compute_type = torch.float16
if 'cmu-lti/sotopia-pi-mistral-7b-BC_SR'in model_name:
model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.1",
cache_dir="./.cache",
device_map='cuda',
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=compute_type,
)
)
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
model = PeftModel.from_pretrained(model, model_name).to("cuda")
elif 'mistralai/Mistral-7B-Instruct-v0.1' in model_name:
model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.1",
cache_dir="./.cache",
device_map='cuda',
)
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
else:
raise RuntimeError(f"Model {model_name} not supported")
return model, tokenizer
def introduction():
with gr.Column(scale=2):
gr.Image(
"images/sotopia.jpg", elem_id="banner-image", show_label=False
)
with gr.Column(scale=5):
gr.Markdown(
"""# Sotopia-Pi Demo
**Chat with [Sotopia-Pi](https://github.com/sotopia-lab/sotopia-pi), brainstorm ideas, discuss your holiday plans, and more!**
➡️️ **Intended Use**: this demo is intended to showcase an early finetuning of [sotopia-pi-mistral-7b-BC_SR](https://huggingface.co/cmu-lti/sotopia-pi-mistral-7b-BC_SR)/
⚠️ **Limitations**: the model can and will produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words.
🗄️ **Disclaimer**: User prompts and generated replies from the model may be collected by TII solely for the purpose of enhancing and refining our models. TII will not store any personally identifiable information associated with your inputs. By using this demo, users implicitly agree to these terms.
"""
)
def create_user_agent_dropdown(environment_id):
_, environment_dict, agent_dict, relationship_dict = get_sotopia_profiles()
environment = environment_dict[environment_id]
user_agents_list = []
unique_agent_ids = set()
for x, _ in relationship_dict[environment.relationship].items():
unique_agent_ids.add(x)
for agent_id in unique_agent_ids:
user_agents_list.append((agent_dict[agent_id].name, agent_id))
return gr.Dropdown(choices=user_agents_list, value=user_agents_list[0][1] if user_agents_list else None, label="User Agent Selection")
def create_bot_agent_dropdown(environment_id, user_agent_id):
_, environment_dict, agent_dict, relationship_dict = get_sotopia_profiles()
environment, user_agent = environment_dict[environment_id], agent_dict[user_agent_id]
bot_agent_list = []
for neighbor_id in relationship_dict[environment.relationship][user_agent.agent_id]:
bot_agent_list.append((agent_dict[neighbor_id].name, neighbor_id))
return gr.Dropdown(choices=bot_agent_list, value=bot_agent_list[0][1] if bot_agent_list else None, label="Bot Agent Selection")
def create_environment_info(environment_dropdown):
_, environment_dict, _, _ = get_sotopia_profiles()
environment = environment_dict[environment_dropdown]
text = environment.scenario
return gr.Textbox(label="Scenario Information", lines=4, value=text)
def create_user_info(environment_dropdown, user_agent_dropdown):
_, environment_dict, agent_dict, _ = get_sotopia_profiles()
environment, user_agent = environment_dict[environment_dropdown], agent_dict[user_agent_dropdown]
text = f"{user_agent.background} {user_agent.personality} \n {environment.agent_goals[0]}"
return gr.Textbox(label="User Agent Profile", lines=4, value=text)
def create_bot_info(environment_dropdown, bot_agent_dropdown):
_, environment_dict, agent_dict, _ = get_sotopia_profiles()
environment, bot_agent = environment_dict[environment_dropdown], agent_dict[bot_agent_dropdown]
text = f"{bot_agent.background} {bot_agent.personality} \n {environment.agent_goals[1]}"
return gr.Textbox(label="Bot Agent Profile", lines=4, value=text)
def sotopia_info_accordion(accordion_visible=True):
with gr.Accordion("Sotopia Information", open=accordion_visible):
with gr.Column():
model_name_dropdown = gr.Dropdown(
choices=["cmu-lti/sotopia-pi-mistral-7b-BC_SR", "mistralai/Mistral-7B-Instruct-v0.1", "GPT3.5"],
value="cmu-lti/sotopia-pi-mistral-7b-BC_SR",
interactive=True,
label="Model Selection"
)
with gr.Row():
environments, _, _, _ = get_sotopia_profiles()
environment_dropdown = gr.Dropdown(
choices=environments,
label="Scenario Selection",
value=environments[0][1] if environments else None,
interactive=True,
)
print(environment_dropdown.value)
user_agent_dropdown = create_user_agent_dropdown(environment_dropdown.value)
bot_agent_dropdown = create_bot_agent_dropdown(environment_dropdown.value, user_agent_dropdown.value)
with gr.Row():
scenario_info_display = create_environment_info(environment_dropdown.value)
user_agent_info_display = create_user_info(environment_dropdown.value, user_agent_dropdown.value)
bot_agent_info_display = create_bot_info(environment_dropdown.value, bot_agent_dropdown.value)
# Update user dropdown when scenario changes
environment_dropdown.change(fn=create_user_agent_dropdown, inputs=[environment_dropdown], outputs=[user_agent_dropdown])
# Update bot dropdown when user or scenario changes
user_agent_dropdown.change(fn=create_bot_agent_dropdown, inputs=[environment_dropdown, user_agent_dropdown], outputs=[bot_agent_dropdown])
# Update scenario information when scenario changes
environment_dropdown.change(fn=create_environment_info, inputs=[environment_dropdown], outputs=[scenario_info_display])
# Update user agent profile when user changes
user_agent_dropdown.change(fn=create_user_info, inputs=[environment_dropdown, user_agent_dropdown], outputs=[user_agent_info_display])
# Update bot agent profile when bot changes
bot_agent_dropdown.change(fn=create_bot_info, inputs=[environment_dropdown, bot_agent_dropdown], outputs=[bot_agent_info_display])
return model_name_dropdown, environment_dropdown, user_agent_dropdown, bot_agent_dropdown
def instructions_accordion(instructions, according_visible=False):
with gr.Accordion("Instructions", open=False, visible=according_visible):
instructions = gr.Textbox(
lines=10,
value=instructions,
interactive=False,
placeholder="Instructions",
show_label=False,
max_lines=10,
visible=False,
)
return instructions
def chat_tab():
# history are input output pairs
def run_chat(
message,
history,
instructions,
user_agent_dropdown,
bot_agent_dropdown,
model_selection:str
):
user_name, bot_name = user_agent_dropdown.value.name, bot_agent_dropdown.value.name
model, tokenizer = prepare_model(model_selection)
prompt = format_sotopia_prompt(
message, history, instructions, user_name, bot_name
)
input_tokens = tokenizer(
prompt, return_tensors="pt", padding="do_not_pad"
).input_ids.to("cuda")
input_length = input_tokens.shape[-1]
output_tokens = model.generate(
input_tokens,
temperature=TEMPERATURE,
top_p=TOP_P,
max_length=MAX_TOKENS,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1,
)
output_tokens = output_tokens[:, input_length:]
text_output = tokenizer.decode(
output_tokens[0], skip_special_tokens=True
)
output = ""
for _ in range(5):
try:
output = format_bot_message(text_output)
break
except Exception as e:
print(e)
print("Retrying...")
return output
_, environment_dict, agent_dict, _ = get_sotopia_profiles()
with gr.Column():
with gr.Row():
model_name_dropdown, scenario_dropdown, user_agent_dropdown, bot_agent_dropdown = sotopia_info_accordion()
starter_prompt = gr.Textbox(value=get_starter_prompt(agent_dict[user_agent_dropdown.value], agent_dict[bot_agent_dropdown.value], environment_dict[scenario_dropdown.value]), label="Modify the prompt as needed:", visible=False)
with gr.Column():
with gr.Blocks():
gr.ChatInterface(
fn=run_chat,
chatbot=gr.Chatbot(
height=620,
render=False,
show_label=False,
rtl=False,
avatar_images=(
"images/profile1.jpg",
"images/profile2.jpg",
),
),
textbox=gr.Textbox(
placeholder="Write your message here...",
render=False,
scale=7,
rtl=False,
),
additional_inputs=[
starter_prompt,
user_agent_dropdown,
bot_agent_dropdown,
model_name_dropdown,
],
submit_btn="Send",
stop_btn="Stop",
retry_btn="🔄 Retry",
undo_btn="↩️ Delete",
clear_btn="🗑️ Clear",
)
def main():
with gr.Blocks(
css="""#chat_container {height: 820px; width: 1000px; margin-left: auto; margin-right: auto;}
#chatbot {height: 600px; overflow: auto;}
#create_container {height: 750px; margin-left: 0px; margin-right: 0px;}
#tokenizer_renderer span {white-space: pre-wrap}
"""
) as demo:
with gr.Row():
introduction()
with gr.Row():
chat_tab()
return demo
def start_demo():
demo = main()
if DEPLOYED:
demo.queue(api_open=False).launch(show_api=False)
else:
demo.queue()
demo.launch(share=False, server_name="0.0.0.0")
if __name__ == "__main__":
get_sotopia_profiles()
# prepare_model(DEFAULT_MODEL_SELECTION)
start_demo()