sotopia-space / sotopia_generate.py
wdplx's picture
changed decorator to prepare_model
7de04aa
raw
history blame
9.77 kB
import re
import os
from typing import TypeVar
from functools import cache
import logging
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from peft import PeftModel
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_community.chat_models import ChatLiteLLM
from langchain.chains import LLMChain
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
PromptTemplate,
)
from langchain.schema import BaseOutputParser, OutputParserException
import spaces
from message_classes import ActionType, AgentAction
from utils import format_docstring
from langchain_callback_handler import LoggingCallbackHandler
HF_TOKEN_KEY_FILE="./hf_token.key"
if os.path.exists(HF_TOKEN_KEY_FILE):
with open(HF_TOKEN_KEY_FILE, "r") as f:
os.environ["HF_TOKEN"] = f.read().strip()
OutputType = TypeVar("OutputType", bound=object)
log = logging.getLogger("generate")
logging_handler = LoggingCallbackHandler("langchain")
def generate_action(
model_name: str,
history: str,
turn_number: int,
action_types: list[ActionType],
agent: str,
temperature: float = 0.7,
) -> AgentAction:
"""
Using langchain to generate an example episode
"""
# try:
# Normal case, model as agent
template = """
Imagine you are {agent}, your task is to act/speak as {agent} would, keeping in mind {agent}'s social goal.
You can find {agent}'s goal (or background) in the 'Here is the context of the interaction' field.
Note that {agent}'s goal is only visible to you.
You should try your best to achieve {agent}'s goal in a way that align with their character traits.
Additionally, maintaining the conversation's naturalness and realism is essential (e.g., do not repeat what other people has already said before).\n
{history}.
You are at Turn #{turn_number}. Your available action types are
{action_list}.
Note: You can "leave" this conversation if 1. you have achieved your social goals, 2. this conversation makes you uncomfortable, 3. you find it uninteresting/you lose your patience, 4. or for other reasons you want to leave.
Please only generate a JSON string including the action type and the argument.
Your action should follow the given format:
{format_instructions}
"""
return generate(
model_name=model_name,
template=template,
input_values=dict(
agent=agent,
turn_number=str(turn_number),
history=history,
action_list=" ".join(action_types),
),
output_parser=PydanticOutputParser(pydantic_object=AgentAction),
temperature=temperature,
)
# except Exception as e:
# print(e)
# return AgentAction(action_type="none", argument="")
@cache
@spaces.GPU(600)
def prepare_model(model_name):
compute_type = torch.float16
if model_name == 'cmu-lti/sotopia-pi-mistral-7b-BC_SR':
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", model_max_length=4096)
model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.1",
cache_dir="./.cache",
device_map='cuda'
)
model = PeftModel.from_pretrained(model, model_name).to("cuda")
elif model_name == 'cmu-lti/sotopia-pi-mistral-7b-BC_SR_4bit':
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", model_max_length=4096)
model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.1",
cache_dir="./.cache",
device_map='cuda',
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=compute_type,
)
)
model = PeftModel.from_pretrained(model, model_name[0:-5]).to("cuda")
elif model_name == 'mistralai/Mistral-7B-Instruct-v0.1':
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1", model_max_length=4096)
tokenizer.model_max_length = 4096
model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.1",
cache_dir="./.cache",
# device_map='cuda'
)
else:
raise RuntimeError(f"Model {model_name} not supported")
return model, tokenizer
def obtain_chain_hf(
model_name: str,
template: str,
input_variables: list[str],
temperature: float = 0.7,
max_retries: int = 6,
max_tokens: int = 2700
) -> LLMChain:
human_message_prompt = HumanMessagePromptTemplate(
prompt=PromptTemplate(template="[INST] " + template + " [/INST]", input_variables=input_variables)
)
chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])
model, tokenizer = prepare_model(model_name)
pipe = pipeline("text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=100,
temperature=temperature,
return_full_text=False,
do_sample=True,
num_beams=3,
)
hf = HuggingFacePipeline(pipeline=pipe)
chain = LLMChain(llm=hf, prompt=chat_prompt_template)
return chain
def generate(
model_name: str,
template: str,
input_values: dict[str, str],
output_parser: BaseOutputParser[OutputType],
temperature: float = 0.7,
) -> OutputType:
input_variables = re.findall(r"{(.*?)}", template)
assert (
set(input_variables) == set(list(input_values.keys()) + ["format_instructions"])
or set(input_variables) == set(list(input_values.keys()))
), f"The variables in the template must match input_values except for format_instructions. Got {sorted(input_values.keys())}, expect {sorted(input_variables)}"
# process template
template = format_docstring(template)
chain = obtain_chain(model_name, template, input_variables, temperature)
if "format_instructions" not in input_values:
input_values["format_instructions"] = output_parser.get_format_instructions()
result = chain.predict([logging_handler], **input_values)
prompt = logging_handler.retrive_prompt()
print(f"Prompt:\n {prompt}")
print(f"Result:\n {result}")
try:
parsed_result = output_parser.parse(result)
except KeyboardInterrupt:
raise KeyboardInterrupt
except Exception as e:
log.debug(
f"[red] Failed to parse result: {result}\nEncounter Exception {e}\nstart to reparse",
extra={"markup": True},
)
reformat_parsed_result = format_bad_output(
result, format_instructions=output_parser.get_format_instructions()
)
print(f"Reformatted result:\n {reformat_parsed_result}")
parsed_result = output_parser.parse(reformat_parsed_result)
log.info(f"Generated result: {parsed_result}")
return parsed_result
def format_bad_output(
ill_formed_output: str,
format_instructions: str,
model_name: str = "gpt-3.5-turbo",
) -> str:
template = """
Given the string that can not be parsed by json parser, reformat it to a string that can be parsed by json parser.
Original string: {ill_formed_output}
Format instructions: {format_instructions}
Please only generate the JSON:
"""
chain = obtain_chain(
model_name=model_name,
template=template,
input_variables=re.findall(r"{(.*?)}", template),
)
input_values = {
"ill_formed_output": ill_formed_output,
"format_instructions": format_instructions,
}
reformat = chain.predict([logging_handler], **input_values)
log.info(f"Reformated output: {reformat}")
return reformat
def obtain_chain(
model_name: str,
template: str,
input_variables: list[str],
temperature: float = 0.7,
max_retries: int = 6,
) -> LLMChain:
"""
Using langchain to sample profiles for participants
"""
if model_name in ["cmu-lti/sotopia-pi-mistral-7b-BC_SR", "cmu-lti/sotopia-pi-mistral-7b-BC_SR_4bit", "mistralai/Mistral-7B-Instruct-v0.1"]:
return obtain_chain_hf(
model_name=model_name,
template=template,
input_variables=input_variables,
temperature=temperature,
max_retries=max_retries,
)
model_name = _return_fixed_model_version(model_name)
chat = ChatLiteLLM(
model=model_name,
temperature=temperature,
max_tokens=2700, # tweak as needed
max_retries=max_retries,
)
human_message_prompt = HumanMessagePromptTemplate(
prompt=PromptTemplate(template=template, input_variables=input_variables)
)
chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])
chain = LLMChain(llm=chat, prompt=chat_prompt_template)
return chain
def _return_fixed_model_version(model_name: str) -> str:
model_version_map = {
"gpt-3.5-turbo": "gpt-3.5-turbo-0613",
"gpt-3.5-turbo-finetuned": "ft:gpt-3.5-turbo-0613:academicscmu::8nY2zgdt",
"gpt-3.5-turbo-ft-MF": "ft:gpt-3.5-turbo-0613:academicscmu::8nuER4bO",
"gpt-4": "gpt-4-0613",
"gpt-4-turbo": "gpt-4-1106-preview",
}
return model_version_map[model_name] if model_name in model_version_map else model_name