Spaces:
Runtime error
Runtime error
Haofei Yu
commited on
Commit
·
3ce130a
1
Parent(s):
6774d89
Feature/support multi turn (#14)
Browse files* add the issue and pr template
* only show generated conversation
* support multi-turn sotopia prompt
app.py
CHANGED
@@ -2,11 +2,12 @@ import gradio as gr
|
|
2 |
from dataclasses import dataclass
|
3 |
import os
|
4 |
import torch
|
|
|
5 |
from uuid import uuid4
|
6 |
from peft import PeftModel, PeftConfig
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
8 |
|
9 |
-
from utils import Agent, get_starter_prompt,
|
10 |
|
11 |
|
12 |
HUMAN_AGENT = Agent(
|
@@ -23,18 +24,23 @@ MACHINE_AGENT = Agent(
|
|
23 |
secrets="Descendant of a wealthy oil tycoon, rejects family fortune",
|
24 |
personality="Benjamin Jackson, expressive and imaginative, leans towards self-direction and liberty. His decisions aim for societal betterment.",)
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
DEPLOYED = os.getenv("DEPLOYED", "true").lower() == "true"
|
29 |
MODEL_NAME = "cmu-lti/sotopia-pi-mistral-7b-BC_SR"
|
30 |
COMPUTE_DTYPE = torch.float16
|
31 |
|
32 |
config_dict = PeftConfig.from_json_file("peft_config.json")
|
33 |
-
# import pdb; pdb.set_trace()
|
34 |
config = PeftConfig.from_peft_type(**config_dict)
|
35 |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
36 |
-
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
37 |
-
model = PeftModel.from_pretrained(model, MODEL_NAME, config=config).to(
|
38 |
according_visible = True
|
39 |
|
40 |
|
@@ -109,10 +115,10 @@ def chat_accordion():
|
|
109 |
max_lines=1,
|
110 |
visible=False,
|
111 |
)
|
112 |
-
|
113 |
return temperature, instructions, user_name, bot_name, session_id, max_tokens
|
114 |
|
115 |
|
|
|
116 |
def run_chat(
|
117 |
message: str,
|
118 |
history,
|
@@ -123,7 +129,13 @@ def run_chat(
|
|
123 |
top_p: float,
|
124 |
max_tokens: int
|
125 |
):
|
126 |
-
prompt =
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
input_tokens = tokenizer(prompt, return_tensors="pt", padding="do_not_pad").input_ids.to("cuda")
|
128 |
input_length = input_tokens.shape[-1]
|
129 |
output_tokens = model.generate(
|
@@ -138,7 +150,7 @@ def run_chat(
|
|
138 |
text_output = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
139 |
return text_output
|
140 |
|
141 |
-
|
142 |
def chat_tab():
|
143 |
with gr.Column():
|
144 |
with gr.Row():
|
@@ -160,7 +172,10 @@ def chat_tab():
|
|
160 |
render=False,
|
161 |
show_label=False,
|
162 |
rtl=False,
|
163 |
-
avatar_images=(
|
|
|
|
|
|
|
164 |
),
|
165 |
textbox=gr.Textbox(
|
166 |
placeholder="Write your message here...",
|
@@ -184,7 +199,6 @@ def chat_tab():
|
|
184 |
)
|
185 |
|
186 |
|
187 |
-
|
188 |
def main():
|
189 |
with gr.Blocks(
|
190 |
css="""#chat_container {height: 820px; width: 1000px; margin-left: auto; margin-right: auto;}
|
|
|
2 |
from dataclasses import dataclass
|
3 |
import os
|
4 |
import torch
|
5 |
+
import transformers
|
6 |
from uuid import uuid4
|
7 |
from peft import PeftModel, PeftConfig
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
9 |
|
10 |
+
from utils import Agent, get_starter_prompt, format_sotopia_prompt
|
11 |
|
12 |
|
13 |
HUMAN_AGENT = Agent(
|
|
|
24 |
secrets="Descendant of a wealthy oil tycoon, rejects family fortune",
|
25 |
personality="Benjamin Jackson, expressive and imaginative, leans towards self-direction and liberty. His decisions aim for societal betterment.",)
|
26 |
|
27 |
+
SCENARIO = "Conversation between two friends, where one is upset and crying"
|
28 |
+
|
29 |
+
DEFUALT_INSTRUCTIONS = get_starter_prompt(
|
30 |
+
MACHINE_AGENT,
|
31 |
+
HUMAN_AGENT,
|
32 |
+
SCENARIO
|
33 |
+
)
|
34 |
|
35 |
DEPLOYED = os.getenv("DEPLOYED", "true").lower() == "true"
|
36 |
MODEL_NAME = "cmu-lti/sotopia-pi-mistral-7b-BC_SR"
|
37 |
COMPUTE_DTYPE = torch.float16
|
38 |
|
39 |
config_dict = PeftConfig.from_json_file("peft_config.json")
|
|
|
40 |
config = PeftConfig.from_peft_type(**config_dict)
|
41 |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
42 |
+
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1").to("cuda")
|
43 |
+
model = PeftModel.from_pretrained(model, MODEL_NAME, config=config).to("cuda")
|
44 |
according_visible = True
|
45 |
|
46 |
|
|
|
115 |
max_lines=1,
|
116 |
visible=False,
|
117 |
)
|
|
|
118 |
return temperature, instructions, user_name, bot_name, session_id, max_tokens
|
119 |
|
120 |
|
121 |
+
# history are input output pairs
|
122 |
def run_chat(
|
123 |
message: str,
|
124 |
history,
|
|
|
129 |
top_p: float,
|
130 |
max_tokens: int
|
131 |
):
|
132 |
+
prompt = format_sotopia_prompt(
|
133 |
+
message,
|
134 |
+
history,
|
135 |
+
instructions,
|
136 |
+
user_name,
|
137 |
+
bot_name
|
138 |
+
)
|
139 |
input_tokens = tokenizer(prompt, return_tensors="pt", padding="do_not_pad").input_ids.to("cuda")
|
140 |
input_length = input_tokens.shape[-1]
|
141 |
output_tokens = model.generate(
|
|
|
150 |
text_output = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
151 |
return text_output
|
152 |
|
153 |
+
|
154 |
def chat_tab():
|
155 |
with gr.Column():
|
156 |
with gr.Row():
|
|
|
172 |
render=False,
|
173 |
show_label=False,
|
174 |
rtl=False,
|
175 |
+
avatar_images=(
|
176 |
+
"images/user_icon.png",
|
177 |
+
"images/bot_icon.png"
|
178 |
+
),
|
179 |
),
|
180 |
textbox=gr.Textbox(
|
181 |
placeholder="Write your message here...",
|
|
|
199 |
)
|
200 |
|
201 |
|
|
|
202 |
def main():
|
203 |
with gr.Blocks(
|
204 |
css="""#chat_container {height: 820px; width: 1000px; margin-left: auto; margin-right: auto;}
|
utils.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
class Agent:
|
2 |
def __init__(self, name, background, goal, secrets, personality):
|
3 |
self.name = name
|
@@ -9,23 +11,62 @@ class Agent:
|
|
9 |
def get_starter_prompt(machine_agent, human_agent, scenario):
|
10 |
return f"Prompt after formatting:\nImagine you are {machine_agent.name}, your task is to act/speak as {machine_agent.name} would, keeping in mind {machine_agent.name}'s social goal.\nYou can find {machine_agent.name}'s background and goal in the 'Here is the context of the interaction' field.\nNote that {machine_agent.name}'s secret and goal is only visible to you.\nYou should try your best to achieve {machine_agent.name}'s goal in a way that align with their character traits.\nAdditionally, maintaining the conversation's naturalness and realism is essential (e.g., do not repeat what other people has already said before).\n\nHere is the context of this interaction:\n Scenario: {scenario}\nParticipants: {human_agent.name} and {machine_agent.name}\n{human_agent.name}'s background: {human_agent.background} Personality and values description: {human_agent.personality} \n{machine_agent.name}'s background: {machine_agent.background} Personality and values description: {machine_agent.personality} {machine_agent.name}'s secrets: {machine_agent.secrets}\n{human_agent.name}'s goal: Unknown\n{machine_agent.name}'s goal: {machine_agent.name}\nConversation Starts:"
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
message: str,
|
14 |
-
|
15 |
instructions: str,
|
16 |
user_name: str,
|
17 |
bot_name: str,
|
18 |
include_all_chat_history: bool = True,
|
19 |
index : int = 1
|
20 |
) -> str:
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
prompt = f"{prompt}\n{user_name}: {user_message}\n{bot_name}: {bot_message}"
|
30 |
-
prompt = f"{prompt}\n{user_name}: {message}\n{bot_name}:"
|
31 |
return prompt
|
|
|
1 |
+
from typing import Tuple, List
|
2 |
+
|
3 |
class Agent:
|
4 |
def __init__(self, name, background, goal, secrets, personality):
|
5 |
self.name = name
|
|
|
11 |
def get_starter_prompt(machine_agent, human_agent, scenario):
|
12 |
return f"Prompt after formatting:\nImagine you are {machine_agent.name}, your task is to act/speak as {machine_agent.name} would, keeping in mind {machine_agent.name}'s social goal.\nYou can find {machine_agent.name}'s background and goal in the 'Here is the context of the interaction' field.\nNote that {machine_agent.name}'s secret and goal is only visible to you.\nYou should try your best to achieve {machine_agent.name}'s goal in a way that align with their character traits.\nAdditionally, maintaining the conversation's naturalness and realism is essential (e.g., do not repeat what other people has already said before).\n\nHere is the context of this interaction:\n Scenario: {scenario}\nParticipants: {human_agent.name} and {machine_agent.name}\n{human_agent.name}'s background: {human_agent.background} Personality and values description: {human_agent.personality} \n{machine_agent.name}'s background: {machine_agent.background} Personality and values description: {machine_agent.personality} {machine_agent.name}'s secrets: {machine_agent.secrets}\n{human_agent.name}'s goal: Unknown\n{machine_agent.name}'s goal: {machine_agent.name}\nConversation Starts:"
|
13 |
|
14 |
+
# we define history as
|
15 |
+
# [(user_message, bot_message), (user_message, bot_message)]
|
16 |
+
|
17 |
+
# we define dialogue history as
|
18 |
+
# user_name: user_message\nbot_name: bot_message\nuser_name: user_message\nbot_name: bot_message\n
|
19 |
+
|
20 |
+
def dialogue_history_length_check(string, max_token, tokenizer):
|
21 |
+
prompt_tokens = len(tokenizer(string)["input_ids"])
|
22 |
+
return max(prompt_tokens - max_token, 0)
|
23 |
+
|
24 |
+
|
25 |
+
def truncate_dialogue_history_to_length(dia_his, surpass_num, tokenizer):
|
26 |
+
dia_sen = dia_his.split("\n")
|
27 |
+
remove_len = 0
|
28 |
+
i = 0
|
29 |
+
while remove_len < surpass_num:
|
30 |
+
remove_len += len(tokenizer(dia_sen[i])["input_ids"])
|
31 |
+
i += 1
|
32 |
+
trunc_dia = "\n".join(p for p in dia_sen[i:])
|
33 |
+
return trunc_dia
|
34 |
+
|
35 |
+
|
36 |
+
def dialogue_history_creation(history, user_name, bot_name):
|
37 |
+
dialogue_history = ""
|
38 |
+
for idx, turn in enumerate(history):
|
39 |
+
user_message, bot_message = turn
|
40 |
+
# TODOTODO (haofeiyu): we first assume that human talks first
|
41 |
+
user_turn_idx = idx * 2
|
42 |
+
bot_turn_idx = idx * 2 + 1
|
43 |
+
dialogue_history = f"{dialogue_history}\n\nTurn #{user_turn_idx}: {user_name}: {user_message}\n\nTurn #{bot_turn_idx}: {bot_name}: {bot_message}"
|
44 |
+
last_turn_idx = len(history) * 2
|
45 |
+
return dialogue_history, last_turn_idx
|
46 |
+
|
47 |
+
|
48 |
+
def dialogue_history_truncation(dialogue_history, max_token_num, tokenizer):
|
49 |
+
surpass_num = dialogue_history_length_check(dialogue_history, max_token_num, tokenizer)
|
50 |
+
if surpass_num > 0:
|
51 |
+
dialogue_history = truncate_dialogue_history_to_length(dialogue_history, surpass_num, tokenizer)
|
52 |
+
return dialogue_history
|
53 |
+
|
54 |
+
|
55 |
+
def format_sotopia_prompt(
|
56 |
message: str,
|
57 |
+
history: List[Tuple[str, str]],
|
58 |
instructions: str,
|
59 |
user_name: str,
|
60 |
bot_name: str,
|
61 |
include_all_chat_history: bool = True,
|
62 |
index : int = 1
|
63 |
) -> str:
|
64 |
+
prompt = instructions.strip()
|
65 |
+
dialogue_history, last_turn_idx = dialogue_history_creation(
|
66 |
+
history,
|
67 |
+
user_name,
|
68 |
+
bot_name
|
69 |
+
)
|
70 |
+
prompt = f"{prompt}\n{dialogue_history}"
|
71 |
+
prompt = f"{prompt}\n\nTurn #{last_turn_idx+1}: {user_name}: {message}\n.\nYou are at Turn #{last_turn_idx+2}."
|
|
|
|
|
72 |
return prompt
|