Spaces:
Runtime error
Runtime error
File size: 8,766 Bytes
7615afe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# -*- coding:utf-8 -*-
import os
import sys
import shutil
import logging
import colorlog
from tqdm import tqdm
import time
import yaml
import random
import importlib
from PIL import Image
from warnings import simplefilter
import imageio
import math
import collections
import json
import numpy as np
import torch
import torch.nn as nn
from torch.optim import Adam
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.data import DataLoader, Dataset
from einops import rearrange, repeat
import torch.distributed as dist
from torchvision import datasets, transforms, utils
logging.getLogger().setLevel(logging.WARNING)
simplefilter(action='ignore', category=FutureWarning)
def get_logger(filename=None):
"""
examples:
logger = get_logger('try_logging.txt')
logger.debug("Do something.")
logger.info("Start print log.")
logger.warning("Something maybe fail.")
try:
raise ValueError()
except ValueError:
logger.error("Error", exc_info=True)
tips:
DO NOT logger.inf(some big tensors since color may not helpful.)
"""
logger = logging.getLogger('utils')
level = logging.DEBUG
logger.setLevel(level=level)
# Use propagate to avoid multiple loggings.
logger.propagate = False
# Remove %(levelname)s since we have colorlog to represent levelname.
format_str = '[%(asctime)s <%(filename)s:%(lineno)d> %(funcName)s] %(message)s'
streamHandler = logging.StreamHandler()
streamHandler.setLevel(level)
coloredFormatter = colorlog.ColoredFormatter(
'%(log_color)s' + format_str,
datefmt='%Y-%m-%d %H:%M:%S',
reset=True,
log_colors={
'DEBUG': 'cyan',
# 'INFO': 'white',
'WARNING': 'yellow',
'ERROR': 'red',
'CRITICAL': 'reg,bg_white',
}
)
streamHandler.setFormatter(coloredFormatter)
logger.addHandler(streamHandler)
if filename:
fileHandler = logging.FileHandler(filename)
fileHandler.setLevel(level)
formatter = logging.Formatter(format_str)
fileHandler.setFormatter(formatter)
logger.addHandler(fileHandler)
# Fix multiple logging for torch.distributed
try:
class UniqueLogger:
def __init__(self, logger):
self.logger = logger
self.local_rank = torch.distributed.get_rank()
def info(self, msg, *args, **kwargs):
if self.local_rank == 0:
return self.logger.info(msg, *args, **kwargs)
def warning(self, msg, *args, **kwargs):
if self.local_rank == 0:
return self.logger.warning(msg, *args, **kwargs)
logger = UniqueLogger(logger)
# AssertionError for gpu with no distributed
# AttributeError for no gpu.
except Exception:
pass
return logger
logger = get_logger()
def split_filename(filename):
absname = os.path.abspath(filename)
dirname, basename = os.path.split(absname)
split_tmp = basename.rsplit('.', maxsplit=1)
if len(split_tmp) == 2:
rootname, extname = split_tmp
elif len(split_tmp) == 1:
rootname = split_tmp[0]
extname = None
else:
raise ValueError("programming error!")
return dirname, rootname, extname
def data2file(data, filename, type=None, override=False, printable=False, **kwargs):
dirname, rootname, extname = split_filename(filename)
print_did_not_save_flag = True
if type:
extname = type
if not os.path.exists(dirname):
os.makedirs(dirname, exist_ok=True)
if not os.path.exists(filename) or override:
if extname in ['jpg', 'png', 'jpeg']:
utils.save_image(data, filename, **kwargs)
elif extname == 'gif':
imageio.mimsave(filename, data, format='GIF', duration=kwargs.get('duration'), loop=0)
elif extname == 'txt':
if kwargs is None:
kwargs = {}
max_step = kwargs.get('max_step')
if max_step is None:
max_step = np.Infinity
with open(filename, 'w', encoding='utf-8') as f:
for i, e in enumerate(data):
if i < max_step:
f.write(str(e) + '\n')
else:
break
else:
raise ValueError('Do not support this type')
if printable: logger.info('Saved data to %s' % os.path.abspath(filename))
else:
if print_did_not_save_flag: logger.info(
'Did not save data to %s because file exists and override is False' % os.path.abspath(
filename))
def file2data(filename, type=None, printable=True, **kwargs):
dirname, rootname, extname = split_filename(filename)
print_load_flag = True
if type:
extname = type
if extname in ['pth', 'ckpt']:
data = torch.load(filename, map_location=kwargs.get('map_location'))
elif extname == 'txt':
top = kwargs.get('top', None)
with open(filename, encoding='utf-8') as f:
if top:
data = [f.readline() for _ in range(top)]
else:
data = [e for e in f.read().split('\n') if e]
elif extname == 'yaml':
with open(filename, 'r') as f:
data = yaml.load(f)
else:
raise ValueError('type can only support h5, npy, json, txt')
if printable:
if print_load_flag:
logger.info('Loaded data from %s' % os.path.abspath(filename))
return data
def ensure_dirname(dirname, override=False):
if os.path.exists(dirname) and override:
logger.info('Removing dirname: %s' % os.path.abspath(dirname))
try:
shutil.rmtree(dirname)
except OSError as e:
raise ValueError('Failed to delete %s because %s' % (dirname, e))
if not os.path.exists(dirname):
logger.info('Making dirname: %s' % os.path.abspath(dirname))
os.makedirs(dirname, exist_ok=True)
def import_filename(filename):
spec = importlib.util.spec_from_file_location("mymodule", filename)
module = importlib.util.module_from_spec(spec)
sys.modules[spec.name] = module
spec.loader.exec_module(module)
return module
def adaptively_load_state_dict(target, state_dict):
target_dict = target.state_dict()
try:
common_dict = {k: v for k, v in state_dict.items() if k in target_dict and v.size() == target_dict[k].size()}
except Exception as e:
logger.warning('load error %s', e)
common_dict = {k: v for k, v in state_dict.items() if k in target_dict}
if 'param_groups' in common_dict and common_dict['param_groups'][0]['params'] != \
target.state_dict()['param_groups'][0]['params']:
logger.warning('Detected mismatch params, auto adapte state_dict to current')
common_dict['param_groups'][0]['params'] = target.state_dict()['param_groups'][0]['params']
target_dict.update(common_dict)
target.load_state_dict(target_dict)
missing_keys = [k for k in target_dict.keys() if k not in common_dict]
unexpected_keys = [k for k in state_dict.keys() if k not in common_dict]
if len(unexpected_keys) != 0:
logger.warning(
f"Some weights of state_dict were not used in target: {unexpected_keys}"
)
if len(missing_keys) != 0:
logger.warning(
f"Some weights of state_dict are missing used in target {missing_keys}"
)
if len(unexpected_keys) == 0 and len(missing_keys) == 0:
logger.warning("Strictly Loaded state_dict.")
def set_seed(seed=42):
random.seed(seed)
os.environ['PYHTONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def image2pil(filename):
return Image.open(filename)
def image2arr(filename):
pil = image2pil(filename)
return pil2arr(pil)
def pil2arr(pil):
if isinstance(pil, list):
arr = np.array(
[np.array(e.convert('RGB').getdata(), dtype=np.uint8).reshape(e.size[1], e.size[0], 3) for e in pil])
else:
arr = np.array(pil)
return arr
def arr2pil(arr):
if arr.ndim == 3:
return Image.fromarray(arr.astype('uint8'), 'RGB')
elif arr.ndim == 4:
return [Image.fromarray(e.astype('uint8'), 'RGB') for e in list(arr)]
else:
raise ValueError('arr must has ndim of 3 or 4, but got %s' % arr.ndim)
def notebook_show(*images):
from IPython.display import Image
from IPython.display import display
display(*[Image(e) for e in images]) |