InstantID2 / app.py
cocktailpeanut's picture
update
a5e6b9f
raw
history blame
16.9 kB
import math
import random
import cv2
import gradio as gr
import numpy as np
import PIL
#import spaces
import torch
from diffusers.models import ControlNetModel
from diffusers.utils import load_image
from insightface.app import FaceAnalysis
from PIL import Image
from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPipeline
from style_template import styles
# global variable
MAX_SEED = np.iinfo(np.int32).max
#device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
if torch.backends.mps.is_available():
device = "mps"
torch_dtype = torch.float32
elif torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Watercolor"
# download checkpoints
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
hf_hub_download(
repo_id="InstantX/InstantID",
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
local_dir="./checkpoints",
)
hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
hf_hub_download(repo_id="latent-consistency/lcm-lora-sdxl", filename="pytorch_lora_weights.safetensors", local_dir="./checkpoints")
# Load face encoder
app = FaceAnalysis(name="antelopev2", root="./", providers=["CPUExecutionProvider"])
app.prepare(ctx_id=0, det_size=(640, 640))
# Path to InstantID models
face_adapter = "./checkpoints/ip-adapter.bin"
controlnet_path = "./checkpoints/ControlNetModel"
lcm_lora_path = "./checkpoints/pytorch_lora_weights.safetensors"
# Load pipeline
#controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch_dtype)
base_model_path = "wangqixun/YamerMIX_v8"
pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
#torch_dtype=torch.float16,
torch_dtype=torch_dtype,
safety_checker=None,
feature_extractor=None,
)
#pipe.cuda()
num_inference_steps = 30
guidance_scale = 5
+# LCM
if os.environ.get("LCM"):
num_inference_steps = 10
guidance_scale = 0
pipe.load_lora_weights(lcm_lora_path)
pipe.fuse_lora()
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
if device == 'mps':
pipe.to("mps", torch_dtype)
pipe.enable_attention_slicing()
elif device == 'cuda':
pipe.cuda()
pipe.load_ip_adapter_instantid(face_adapter)
#pipe.image_proj_model.to("cuda")
#pipe.unet.to("cuda")
if device == 'mps' or device == 'cuda':
pipe.image_proj_model.to(device)
pipe.unet.to(device)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def remove_tips():
return gr.update(visible=False)
def get_example():
case = [
[
"./examples/yann-lecun_resize.jpg",
"a man",
"Snow",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
],
[
"./examples/musk_resize.jpeg",
"a man",
"Mars",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
],
[
"./examples/sam_resize.png",
"a man",
"Jungle",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree",
],
[
"./examples/schmidhuber_resize.png",
"a man",
"Neon",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
],
[
"./examples/kaifu_resize.png",
"a man",
"Vibrant Color",
"(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
],
]
return case
def run_for_examples(face_file, prompt, style, negative_prompt):
return generate_image(face_file, None, prompt, negative_prompt, style, True, 30, 0.8, 0.8, 5, 42)
def convert_from_cv2_to_image(img: np.ndarray) -> Image:
return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
def convert_from_image_to_cv2(img: Image) -> np.ndarray:
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
w, h = image_pil.size
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly(
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
return out_img_pil
def resize_img(
input_image,
max_side=1280,
min_side=1024,
size=None,
pad_to_max_side=False,
mode=PIL.Image.BILINEAR,
base_pixel_number=64,
):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio * w), round(ratio * h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + " " + negative
def check_input_image(face_image):
if face_image is None:
raise gr.Error("Cannot find any input face image! Please upload the face image")
#@spaces.GPU
def generate_image(
face_image_path,
pose_image_path,
prompt,
negative_prompt,
style_name,
enhance_face_region,
num_steps,
identitynet_strength_ratio,
adapter_strength_ratio,
guidance_scale,
seed,
progress=gr.Progress(track_tqdm=True),
):
if prompt is None:
prompt = "a person"
# apply the style template
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
face_image = load_image(face_image_path)
face_image = resize_img(face_image)
face_image_cv2 = convert_from_image_to_cv2(face_image)
height, width, _ = face_image_cv2.shape
# Extract face features
face_info = app.get(face_image_cv2)
if len(face_info) == 0:
raise gr.Error("Cannot find any face in the image! Please upload another person image")
face_info = sorted(face_info, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1])[
-1
] # only use the maximum face
face_emb = face_info["embedding"]
face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"])
if pose_image_path is not None:
pose_image = load_image(pose_image_path)
pose_image = resize_img(pose_image)
pose_image_cv2 = convert_from_image_to_cv2(pose_image)
face_info = app.get(pose_image_cv2)
if len(face_info) == 0:
raise gr.Error("Cannot find any face in the reference image! Please upload another person image")
face_info = face_info[-1]
face_kps = draw_kps(pose_image, face_info["kps"])
width, height = face_kps.size
if enhance_face_region:
control_mask = np.zeros([height, width, 3])
x1, y1, x2, y2 = face_info["bbox"]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
control_mask[y1:y2, x1:x2] = 255
control_mask = Image.fromarray(control_mask.astype(np.uint8))
else:
control_mask = None
generator = torch.Generator(device=device).manual_seed(seed)
print("Start inference...")
print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
pipe.set_ip_adapter_scale(adapter_strength_ratio)
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image_embeds=face_emb,
image=face_kps,
control_mask=control_mask,
controlnet_conditioning_scale=float(identitynet_strength_ratio),
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
generator=generator,
).images
return images[0], gr.update(visible=True)
### Description
title = r"""
<h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
"""
description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/InstantID/InstantID' target='_blank'><b>InstantID: Zero-shot Identity-Preserving Generation in Seconds</b></a>.<br>
How to use:<br>
1. Upload a person image. For multiple person images, we will only detect the biggest face. Make sure face is not too small and not significantly blocked or blurred.
2. (Optionally) upload another person image as reference pose. If not uploaded, we will use the first person image to extract landmarks. If you use a cropped face at step1, it is recommeneded to upload it to extract a new pose.
3. Enter a text prompt as done in normal text-to-image models.
4. Click the <b>Submit</b> button to start customizing.
5. Share your customizd photo with your friends, enjoy😊!
"""
article = r"""
---
📝 **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
@article{wang2024instantid,
title={InstantID: Zero-shot Identity-Preserving Generation in Seconds},
author={Wang, Qixun and Bai, Xu and Wang, Haofan and Qin, Zekui and Chen, Anthony},
journal={arXiv preprint arXiv:2401.07519},
year={2024}
}
```
📧 **Contact**
<br>
If you have any questions, please feel free to open an issue or directly reach us out at <b>haofanwang.ai@gmail.com</b>.
"""
tips = r"""
### Usage tips of InstantID
1. If you're unsatisfied with the similarity, increase the weight of controlnet_conditioning_scale (IdentityNet) and ip_adapter_scale (Adapter).
2. If the generated image is over-saturated, decrease the ip_adapter_scale. If not work, decrease controlnet_conditioning_scale.
3. If text control is not as expected, decrease ip_adapter_scale.
4. Find a good base model always makes a difference.
"""
css = """
.gradio-container {width: 85% !important}
"""
with gr.Blocks(css=css) as demo:
# description
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
# upload face image
face_file = gr.Image(label="Upload a photo of your face", type="filepath")
# optional: upload a reference pose image
pose_file = gr.Image(label="Upload a reference pose image (optional)", type="filepath")
# prompt
prompt = gr.Textbox(
label="Prompt",
info="Give simple prompt is enough to achieve good face fedility",
placeholder="A photo of a person",
value="",
)
submit = gr.Button("Submit", variant="primary")
style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
# strength
identitynet_strength_ratio = gr.Slider(
label="IdentityNet strength (for fedility)",
minimum=0,
maximum=1.5,
step=0.05,
value=0.80,
)
adapter_strength_ratio = gr.Slider(
label="Image adapter strength (for detail)",
minimum=0,
maximum=1.5,
step=0.05,
value=0.80,
)
with gr.Accordion(open=False, label="Advanced Options"):
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="low quality",
value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, nudity,naked, bikini, skimpy, scanty, bare skin, lingerie, swimsuit, exposed, see-through, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green",
)
num_steps = gr.Slider(
label="Number of sample steps",
minimum=20,
maximum=100,
step=1,
value=num_inference_steps,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.1,
maximum=10.0,
step=0.1,
value=guidance_scale,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True)
with gr.Column():
output_image = gr.Image(label="Generated Image")
usage_tips = gr.Markdown(label="Usage tips of InstantID", value=tips, visible=False)
submit.click(
fn=remove_tips,
outputs=usage_tips,
queue=False,
api_name=False,
).then(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=check_input_image,
inputs=face_file,
queue=False,
api_name=False,
).success(
fn=generate_image,
inputs=[
face_file,
pose_file,
prompt,
negative_prompt,
style,
enhance_face_region,
num_steps,
identitynet_strength_ratio,
adapter_strength_ratio,
guidance_scale,
seed,
],
outputs=[output_image, usage_tips],
)
gr.Examples(
examples=get_example(),
inputs=[face_file, prompt, style, negative_prompt],
outputs=[output_image, usage_tips],
fn=run_for_examples,
cache_examples=True,
)
gr.Markdown(article)
demo.queue(api_open=False)
demo.launch()