import itertools import numpy as np from typing import Dict from datasets import load_dataset DATASET = "codeparrot/apps" def evaluate_generations(generations: list, level: str = "all", debug: bool = False): """We take the list of code generations and try to compile them and the run their corresponding unit tests which are retrieved from the APPS dataset. Args: generations: list of code generations (same order as samples in APPS dataset) level: difficulty level used in the generation, can be "all", "introductory", "interview" or "competition" Returns: results: dictionary of results, key is the problem index, value is a list of results for each generation [-2] = compile error, [-1] = runtime error [False] = failed test case [True] = passed test case """ # generations are code generations in the same order of the dataset apps_eval = load_dataset(DATASET, split="test", difficulties=[level]) results = {} for index in range(len(generations)): # code generations for problem (index) problem_generations = generations[index] # get corresponding samples from APPS dataset sample = apps_eval[index] res = [] # loop over the generations for o_idx, o in enumerate(problem_generations): curr_res = [-2] try: curr_res = run_test(sample, test=o, debug=debug) if debug: print(f"\nSuccessful compilation of task {index}!") fixed = [] for e in curr_res: if isinstance(e, np.ndarray): e = e.item(0) if isinstance(e, np.bool_): e = bool(e) fixed.append(e) curr_res = fixed if not np.all(curr_res): #if debug: print(f"Results were not True for all test cases") except Exception as e: if debug: print(f"Compilation failed, test framework exception = {repr(e)}{e}\n") break finally: assert isinstance(curr_res, list) res.append(curr_res) results[index] = res return results def estimate_pass_at_k(num_samples, num_correct, k): """Estimates pass@k of each problem and returns them in an array.""" def estimator(n: int, c: int, k: int) -> float: """Calculates 1 - comb(n - c, k) / comb(n, k).""" if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1)) if isinstance(num_samples, int): num_samples_it = itertools.repeat(num_samples, len(num_correct)) else: assert len(num_samples) == len(num_correct) num_samples_it = iter(num_samples) return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)]) def get_results(results: Dict[int, list], count_errors: bool = False, k_list: list = [1, 10, 100]): """ Given the results evaluated against the testcases we output some statistics. For single generations: >>> example_results = {0: [[-2]], 1: [[False,False]], 2: [[True,True]], 3: [[False,True,False,True]], 4: [[-1,-1]]} >>> get_results(example_results, count_errors=True) Computing accuracy metrics... number of compile errors = 1 avg = 0.2 number of runtime errors = 1 avg = 0.2 number of problems evaluated = 5 Average Accuracy : 0.3 Strict Accuracy : 0.2 {'avg_accuracy': 0.3, 'strict_accuracy': 0.2, 'pass_at_k': None} For multiple generations: >>> example_results = {0: [[-2], [True, True, True]], 1: [[-1,-1, -1], [True, False, True]]} >>> get_results(example_results, k_list=[1, 2]) Computing pass@k metric for multiple generations... {'pass@1': 0.25, 'pass@2': 0.5} {'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 0.25, 'pass@2': 0.5}} """ metrics = {"avg_accuracy": None, "strict_accuracy": None, "pass_at_k": None} if len(results[0]) == 1: # for single generations we compute average accuracy and stric accuracy: original APPS metrics print("Computing accuracy metrics...") res = [] per_prob_res = [] all_correct = [] for index in results: problem_results = np.asarray(results[index]) res.extend(problem_results) per_prob_res.append(np.mean(problem_results > 0)) all_correct.append(np.all(problem_results > 0)) # we count campilation and runtime errors once per pronlem compile_errors = len([e for e in res if -2 in e]) runtime_errors = len([e for e in res if -1 in e]) total_testcases = len(res) if count_errors: print(f"number of compile errors = {compile_errors} avg = {compile_errors / total_testcases}") print(f"number of runtime errors = {runtime_errors} avg = {runtime_errors / total_testcases}") print(f"number of problems evaluated = {total_testcases}") print(f"Average Accuracy : {np.mean(per_prob_res)}") print(f"Strict Accuracy : {np.mean(all_correct)}") metrics["avg_accuracy"] = np.mean(per_prob_res) metrics["strict_accuracy"] = np.mean(all_correct) else: # for multiple generations we use pass@k metric used in the HumanEval benchmark # we use strict accuracy, a generation is valid if it has to pass all the tests print("Computing pass@k metric for multiple generations...") # total is list with nb generations per task (task=index) # correct is number of generations that passed all tests per task total = [] correct = [] for index in results: all_correct = [] for generation in results[index]: gen = np.array(generation) all_correct.append(np.all(gen>0)) total.append(len(all_correct)) correct.append(sum(all_correct)) total = np.array(total) correct = np.array(correct) ks = k_list pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean() for k in ks if (total >= k).all()} print(pass_at_k) metrics["pass_at_k"] = pass_at_k return metrics def compute_metrics(generations, level="all", k_list=[1, 10, 100], count_errors=True, debug=False): """Return metrics for the given generations. Args: generations: list of code generations for each problem (each generation is a list of generations) k_list: list of k values to compute pass@k when using multiple generations count_errors: whether to count compilation and runtime errors when using single generations level: difficulty level in APPS dataset that was used for the given generations (from: "all", "introductory", "interview", "competition") Returns: metrics: dict of metrics Examples: >>> import json >>> # lists of solutions to the two first APPS problems (note not all solutions pass all tests) >>> solution_sample1 = json.load(open("test_examples/solutions_problem_1.json", "r")) >>> solution_sample2 = json.load(open("test_examples/solutions_problem_2.json", "r")) >>> single_solutions = [solution_sample1[:1], solution_sample2[:1]] >>> compute_metrics(single_solutions, level="all") Computing accuracy metrics... number of compile errors = 0 avg = 0.0 number of runtime errors = 0 avg = 0.0 number of problems evaluated = 2 Average Accuracy : 1.0 Strict Accuracy : 1.0 {'avg_accuracy': 1.0, 'strict_accuracy': 1.0, 'pass_at_k': None} >>> multiple_solutions = [solution_sample1[:3], solution_sample2[:3]] >>> compute_metrics(multiple_solutions, level="all", k_list=[1, 2, 3]) Computing pass@k metric for multiple generations... {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0} {'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}} """ results = evaluate_generations(generations, level=level, debug=debug) metrics = get_results(results, count_errors=count_errors, k_list=k_list) return metrics #import doctest #doctest.testmod() #--------------------------------------------------------------------------------------------- # below is the content of testing_util.py as a temporary workaround for the relative path problem #---------------------------------------------------------------------------------------------- import json import sys import faulthandler # used for debugging to time steps from datetime import datetime # to run the solution files we're using a timing based approach import signal import numpy as np # for capturing the stdout from io import StringIO # used for testing the code that reads from input from unittest.mock import patch, mock_open from pyext import RuntimeModule from enum import Enum class CODE_TYPE(Enum): call_based = 0 standard_input = 1 # stuff for setting up signal timer class TimeoutException(Exception): pass def timeout_handler(signum, frame): print("alarm went off") #return raise TimeoutException signal.signal(signal.SIGALRM, timeout_handler) timeout = 4 # seconds # used to capture stdout as a list # from https://stackoverflow.com/a/16571630/6416660 # alternative use redirect_stdout() from contextlib class Capturing(list): def __enter__(self): self._stdout = sys.stdout sys.stdout = self._stringio = StringIO() # Make closing the StringIO a no-op self._stringio.close = lambda x: 1 return self def __exit__(self, *args): self.extend(self._stringio.getvalue().splitlines()) del self._stringio # free up some memory sys.stdout = self._stdout def run_test(sample, test=None, debug=False): """ if test(generated_code) is not None it'll try to run the code. otherwise it'll just return an input and output pair. """ if debug: print(f"start = {datetime.now().time()}") try: in_outs = json.loads(sample["input_output"]) except ValueError: in_outs = None if in_outs: if in_outs.get("fn_name") is None: which_type = CODE_TYPE.standard_input # Standard input method_name = None else: which_type = CODE_TYPE.call_based # Call-based method_name = in_outs["fn_name"] if debug: print(f"loaded input_output = {datetime.now().time()}") if test is None: return in_outs elif test is not None: results = [] sol = "import sys\nimport time\nimport itertools\nfrom itertools import accumulate, product, permutations, combinations\nimport collections\nfrom collections import Counter, OrderedDict, deque, defaultdict, ChainMap\nfrom functools import lru_cache\nimport math\nfrom math import sqrt, sin, cos, tan, ceil, fabs, floor, gcd, exp, log, log2\nimport fractions\nfrom typing import List, Tuple\nimport numpy as np\nimport random\nimport heapq\nfrom heapq import *\n" if debug: print(f"loading test code = {datetime.now().time()}") if which_type == CODE_TYPE.call_based: sol += test if debug: print(f"sol = {sol}") signal.alarm(timeout) try: tmp_sol = RuntimeModule.from_string("tmp_sol", "", sol) if "class Solution" not in test: tmp = tmp_sol else: tmp = tmp_sol.Solution() signal.alarm(0) except Exception as e: signal.alarm(0) if debug: print(f"type 0 compilation error = {e}") results.append(-2) return results signal.alarm(0) elif which_type == CODE_TYPE.standard_input: # sol tmp_test = test.split("\n") new_test = [] for x in tmp_test: if (not x.startswith("from ")) and (not x.startswith("import ")): new_test.append("\t" + x + "\n") else: new_test.append(x + "\n") tmp_test = new_test new_test = "" started = False for i in tmp_test: if i.startswith("\t") and not started: new_test += "stdin = sys.stdin\nstdout = sys.stdout\n" new_test += "def code():\n" new_test += i started = True elif started and ((i.startswith("from ")) or (i.startswith("import "))): new_test += "\t" + i else: new_test += i tmp_test = new_test sol += tmp_test if debug: print(f"sol = {sol}") method_name = "code" signal.alarm(timeout) try: tmp_sol = RuntimeModule.from_string("tmp_sol", "", sol) tmp = tmp_sol signal.alarm(0) except Exception as e: signal.alarm(0) if debug: print(f"type 1 compilation error = {e}") results.append(-2) return results signal.alarm(0) if debug: print(f"get method = {datetime.now().time()}") try: method = getattr(tmp, method_name) # get_attr second arg must be str except: signal.alarm(0) e = sys.exc_info() print(f"unable to get function error = {e}") return results for index, inputs in enumerate(in_outs["inputs"]): # JSON forces dictionaries to have string keys; this undoes this (assuming a singleton list) try: if isinstance(inputs[0], dict): inputs = [{int(k): v for k,v in inputs[0].items()}] except: True try: if isinstance(in_outs["outputs"][index], dict): in_outs["outputs"][index] = [{int(k): v for k,v in in_outs["outputs"][index].items()}] except: True try: if isinstance(in_outs["outputs"][index][0], dict): in_outs["outputs"][index] = [{int(k): v for k,v in in_outs["outputs"][index][0].items()}] except: True if debug: print(f"time: {datetime.now().time()} testing index = {index} inputs = {inputs}, {type(inputs)}. type = {which_type}") if which_type == CODE_TYPE.call_based: # Call-based signal.alarm(timeout) faulthandler.enable() try: output = method(*inputs) # ground truth sequences are not tuples if isinstance(output, tuple): output = list(output) tmp_result = output == in_outs["outputs"][index] if isinstance(in_outs["outputs"][index], list) and in_outs["outputs"][index]: tmp_result = tmp_result or (output == in_outs["outputs"][index][0]) # ground truth sequences are not tuples try: if isinstance(output[0], tuple): tmp_result = tmp_result or ([list(x) for x in output] == in_outs["outputs"][index][0]) except: True results.append(tmp_result) # reset the alarm signal.alarm(0) except Exception as e: signal.alarm(0) faulthandler.disable() print(f"Standard input runtime error or time limit exceeded error = {e}") results.append(-1) continue faulthandler.disable() signal.alarm(0) if debug: print(f"outputs = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs}, {type(inputs)}, {output == [in_outs['outputs'][index]]}") elif which_type == CODE_TYPE.standard_input: # Standard input faulthandler.enable() signal.alarm(timeout) passed = False if isinstance(inputs, list): inputs = "\n".join(inputs) if isinstance(in_outs['outputs'][index], list): in_outs['outputs'][index] = "\n".join(in_outs['outputs'][index]) with Capturing() as output: try: call_method(method, inputs) # reset the alarm signal.alarm(0) passed = True except Exception as e: # runtime error or took too long signal.alarm(0) print(f"Call-based runtime error or time limit exceeded error = {repr(e)}{e}") results.append(-1) signal.alarm(0) if not passed: if debug: nl = "\n" if not isinstance(inputs, list): print(f"not passed output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs.replace(nl,' new-line ')}, {type(inputs)}, {output == [in_outs['outputs'][index]]}") else: print(f"not passed output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs}, {type(inputs)}, {output == [in_outs['outputs'][index]]}") continue if passed and debug: print(f"==> output = {output}, test outputs = {in_outs['outputs'][index]}") if custom_compare_(output, in_outs['outputs'][index]): tmp_result = True results.append(tmp_result) continue # ground truth sequences are expressed as lists not tuples if isinstance(output, tuple): output = list(output) tmp_result = False try: tmp_result = (output == [in_outs["outputs"][index]]) if isinstance(in_outs["outputs"][index], list): tmp_result = tmp_result or (output == in_outs["outputs"][index]) if isinstance(output[0], str): tmp_result = tmp_result or ([e.strip() for e in output] == in_outs["outputs"][index]) except Exception as e: if debug: print(f"Failed check1 exception = {e}") pass if tmp_result == True: results.append(tmp_result) continue # try one more time without \n if isinstance(in_outs["outputs"][index], list): for tmp_index, i in enumerate(in_outs["outputs"][index]): in_outs["outputs"][index][tmp_index] = i.split("\n") in_outs["outputs"][index][tmp_index] = [x.strip() for x in in_outs["outputs"][index][tmp_index] if x] else: in_outs["outputs"][index] = in_outs["outputs"][index].split("\n") in_outs["outputs"][index] = list(filter(len, in_outs["outputs"][index])) in_outs["outputs"][index] = list(map(lambda x:x.strip(), in_outs["outputs"][index])) try: tmp_result = (output == [in_outs["outputs"][index]]) if isinstance(in_outs["outputs"][index], list): tmp_result = tmp_result or (output == in_outs["outputs"][index]) except Exception as e: if debug: print(f"Failed check2 exception = {e}") pass if tmp_result == True: results.append(tmp_result) continue # try by converting the output into a split up list too if isinstance(output, list): output = list(filter(len, output)) if debug: nl = "\n" if not isinstance(inputs, list): print(f"output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs.replace(nl,' new-line ')}, {type(inputs)}, {output == [in_outs['outputs'][index]]}") else: print(f"output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs}, {type(inputs)}, {output == [in_outs['outputs'][index]]}") if tmp_result == True: results.append(tmp_result) continue try: tmp_result = (output == [in_outs["outputs"][index]]) if isinstance(in_outs["outputs"][index], list): tmp_result = tmp_result or (output == in_outs["outputs"][index]) except Exception as e: if debug: print(f"Failed check3 exception = {e}") pass try: output_float = [float(e) for e in output] gt_float = [float(e) for e in in_outs['outputs'][index]] tmp_result = tmp_result or ((len(output_float) == len(gt_float)) and np.allclose(output_float, gt_float)) except Exception as e: pass try: if isinstance(output[0], list): output_float = [float(e) for e in output[0]] gt_float = [float(e) for e in in_outs['outputs'][index][0]] tmp_result = tmp_result or ((len(output_float) == len(gt_float)) and np.allclose(output_float, gt_float)) except Exception as e: pass if tmp_result == True: results.append(tmp_result) continue # try by converting the stuff into split up list if isinstance(in_outs["outputs"][index], list): for tmp_index, i in enumerate(in_outs["outputs"][index]): in_outs["outputs"][index][tmp_index] = set(i.split()) else: in_outs["outputs"][index] = set(in_outs["outputs"][index].split()) try: tmp_result = (output == in_outs["outputs"][index]) except Exception as e: if debug: print(f"Failed check4 exception = {e}") continue if tmp_result == True: results.append(tmp_result) continue # try by converting the output into a split up list too if isinstance(output, list): for tmp_index, i in enumerate(output): output[tmp_index] = i.split() output = list(filter(len, output)) for tmp_index, i in enumerate(output): output[tmp_index] = set(i) else: output = output.split() output = list(filter(len, output)) output = set(output) try: tmp_result = (set(frozenset(s) for s in output) == set(frozenset(s) for s in in_outs["outputs"][index])) except Exception as e: if debug: print(f"Failed check5 exception = {e}") # if they are all numbers, round so that similar numbers are treated as identical try: tmp_result = tmp_result or (set(frozenset(round(float(t),3) for t in s) for s in output) ==\ set(frozenset(round(float(t),3) for t in s) for s in in_outs["outputs"][index])) except Exception as e: if debug: print(f"Failed check6 exception = {e}") if tmp_result == True and debug: print("PASSED") results.append(tmp_result) if debug: nl = "\n" if not isinstance(inputs, list): print(f"output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs.replace(nl,' new-line ')}, {type(inputs)}, {output == [in_outs['outputs'][index]]}") else: print(f"output = {output}, test outputs = {in_outs['outputs'][index]}, inputs = {inputs}, {type(inputs)}, {output == [in_outs['outputs'][index]]}") return results def custom_compare_(output, ground_truth): if isinstance(output, list): output_1 = "\n".join(output) if stripped_string_compare(output_1, ground_truth): return True if isinstance(output, list): output_2 = [o.lstrip().rstrip() for o in output] output_2 = "\n".join(output_2) if stripped_string_compare(output_2, ground_truth): return True return False def stripped_string_compare(s1, s2): s1 = s1.lstrip().rstrip() s2 = s2.lstrip().rstrip() return s1 == s2 def call_method(method, inputs): if isinstance(inputs, list): inputs = "\n".join(inputs) inputs_line_iterator = iter(inputs.split("\n")) # sys.setrecursionlimit(10000) # @patch('builtins.input', side_effect=inputs.split("\n")) @patch('builtins.open', mock_open(read_data=inputs)) @patch('sys.stdin', StringIO(inputs)) @patch('sys.stdin.readline', lambda *args: next(inputs_line_iterator)) @patch('sys.stdin.readlines', lambda *args: inputs.split("\n")) @patch('sys.stdin.read', lambda *args: inputs) # @patch('sys.stdout.write', print) def _inner_call_method(_method): try: return _method() except SystemExit as e: pass finally: pass return _inner_call_method(method)