loubnabnl's picture
loubnabnl HF staff
Update app.py
e66e7a4
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
from transformers import pipeline
title = "InCoder Generator"
description = "This is a subspace to make code generation with [InCoder-1B](https://huggingface.co/facebook/incoder-1B), it is used in a larger [space](https://huggingface.co/spaces/loubnabnl/Code-generation-models-v1) for model comparison. You can find the original demo for InCoder [here](https://huggingface.co/spaces/facebook/incoder-demo)."
example = [
["def count_words(filename):", 40, 0.6, 42],
["def print_hello_world():", 8, 0.6, 42],
["def get_file_size(filepath):", 22, 0.6, 42]]
tokenizer = AutoTokenizer.from_pretrained("facebook/incoder-1B")
model = AutoModelForCausalLM.from_pretrained("facebook/incoder-1B", low_cpu_mem_usage=True)
MAX_LENGTH = 2048
BOS = "<|endoftext|>"
EXTENSION = "<| file ext=.py |>\n"
def generate(gen_prompt, max_tokens, temperature=0.6, seed=42):
set_seed(seed)
gen_prompt = EXTENSION + gen_prompt
input_ids = tokenizer(gen_prompt, return_tensors="pt").input_ids
current_length = input_ids.flatten().size(0)
max_length = max_tokens + current_length
if max_length > MAX_LENGTH:
max_length = MAX_LENGTH
output = model.generate(input_ids=input_ids, do_sample=True, top_p=0.95, temperature=temperature, max_length=max_length)
generated_text = tokenizer.decode(output.flatten())
if generated_text.startswith(BOS):
generated_text = generated_text[len(BOS):]
generated_text = generated_text[len(EXTENSION):]
return generated_text
iface = gr.Interface(
fn=generate,
inputs=[
gr.Code(lines=10, label="Input code"),
gr.inputs.Slider(
minimum=8,
maximum=256,
step=1,
default=8,
label="Number of tokens to generate",
),
gr.inputs.Slider(
minimum=0.1,
maximum=2,
step=0.1,
default=0.6,
label="Temperature",
),
gr.inputs.Slider(
minimum=0,
maximum=1000,
step=1,
default=42,
label="Random seed to use for the generation"
)
],
outputs=gr.Code(label="Predicted code", lines=10),
examples=example,
layout="horizontal",
theme="peach",
description=description,
title=title
)
iface.launch()