import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed from transformers import pipeline title = "InCoder Generator" description = "This is a subspace to make code generation with [InCoder-1B](https://huggingface.co/facebook/incoder-1B), it is used in a larger [space](https://huggingface.co/spaces/loubnabnl/Code-generation-models-v1) for model comparison. You can find the original demo for InCoder [here](https://huggingface.co/spaces/facebook/incoder-demo)." example = [ ["def count_words(filename):", 40, 0.6, 42], ["def print_hello_world():", 8, 0.6, 42], ["def get_file_size(filepath):", 22, 0.6, 42]] tokenizer = AutoTokenizer.from_pretrained("facebook/incoder-1B") model = AutoModelForCausalLM.from_pretrained("facebook/incoder-1B", low_cpu_mem_usage=True) MAX_LENGTH = 2048 BOS = "<|endoftext|>" EXTENSION = "<| file ext=.py |>\n" def generate(gen_prompt, max_tokens, temperature=0.6, seed=42): set_seed(seed) gen_prompt = EXTENSION + gen_prompt input_ids = tokenizer(gen_prompt, return_tensors="pt").input_ids current_length = input_ids.flatten().size(0) max_length = max_tokens + current_length if max_length > MAX_LENGTH: max_length = MAX_LENGTH output = model.generate(input_ids=input_ids, do_sample=True, top_p=0.95, temperature=temperature, max_length=max_length) generated_text = tokenizer.decode(output.flatten()) if generated_text.startswith(BOS): generated_text = generated_text[len(BOS):] generated_text = generated_text[len(EXTENSION):] return generated_text iface = gr.Interface( fn=generate, inputs=[ gr.Code(lines=10, label="Input code"), gr.inputs.Slider( minimum=8, maximum=256, step=1, default=8, label="Number of tokens to generate", ), gr.inputs.Slider( minimum=0.1, maximum=2, step=0.1, default=0.6, label="Temperature", ), gr.inputs.Slider( minimum=0, maximum=1000, step=1, default=42, label="Random seed to use for the generation" ) ], outputs=gr.Code(label="Predicted code", lines=10), examples=example, layout="horizontal", theme="peach", description=description, title=title ) iface.launch()