File size: 4,134 Bytes
2e727c2 c81d8ab 2e727c2 b3c7043 2e727c2 580e12f 2e727c2 3d2876f 931e757 3d2876f b588b2c d7f037a 9e17c04 2e727c2 b451def c81d8ab b451def c81d8ab 7cd8f48 c81d8ab 7cd8f48 b451def b588b2c 3d2876f b451def 980b3f8 3d2876f 980b3f8 b451def b588b2c 2e727c2 980b3f8 2e727c2 3d2876f 980b3f8 3d2876f 980b3f8 b588b2c 980b3f8 2e727c2 980b3f8 2e727c2 f05ba0b 23659c4 f05ba0b 23659c4 f05ba0b 23659c4 f05ba0b 23659c4 2e727c2 c81d8ab 3d2876f 2e727c2 c81d8ab 2e727c2 3d2876f 2e727c2 b588b2c fb658f7 b451def c81d8ab 7cd8f48 b3c7043 580e12f 23659c4 f05ba0b fc9e651 3d2876f d7f037a 9e17c04 931e757 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
from transformers import pipeline, AutoTokenizer
from sentence_transformers import SentenceTransformer, util
import nltk
from nltk.tokenize import sent_tokenize
# Download NLTK data
nltk.download('punkt')
# Translation models
translation_models = {
'Vietnamese': "Helsinki-NLP/opus-mt-en-vi",
'Japanese': "Helsinki-NLP/opus-mt-en-jap",
'Thai': "Helsinki-NLP/opus-mt-en-tha",
'Spanish': "Helsinki-NLP/opus-mt-en-es"
}
# Initialize summarization pipelines with specified models
summarization_models = {
'Scientific': "sshleifer/distilbart-cnn-12-6",
'Literature': "t5-small"
}
# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained("t5-small") # Using t5-small tokenizer for all models
# Initialize summarization pipelines
summarizers = {model: pipeline("summarization", model=model) for model in summarization_models.values()}
# Initialize translation pipeline
def get_translator(language):
model_name = translation_models.get(language)
if model_name:
return pipeline("translation", model=model_name)
return None
# Helper function to split text into chunks
def split_text(text, max_tokens=1024):
inputs = tokenizer(text, return_tensors='pt', truncation=False)
input_ids = inputs['input_ids'][0]
total_tokens = len(input_ids)
chunks = []
start = 0
while start < total_tokens:
end = min(start + max_tokens, total_tokens)
chunk_ids = input_ids[start:end]
chunk_text = tokenizer.decode(chunk_ids, skip_special_tokens=True)
chunks.append(chunk_text)
start = end
return chunks
# Helper function to summarize text
def summarize_text(text, model):
chunks = split_text(text)
summaries = []
for chunk in chunks:
try:
summary = summarizers[model](chunk, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
summaries.append(summary)
except Exception as e:
print(f"Error summarizing chunk: {chunk}\nError: {e}")
return " ".join(summaries)
# Helper function to translate text
def translate_text(text, language):
translator = get_translator(language)
if translator:
try:
translated_text = translator(text)[0]['translation_text']
return translated_text
except Exception as e:
print(f"Error translating text: {text}\nError: {e}")
return text
return text
def process_text(input_text, model, language):
print(f"Input text: {input_text[:500]}...") # Show only the first 500 characters for brevity
summary = summarize_text(input_text, model)
print(f"Summary: {summary[:500]}...") # Show only the first 500 characters for brevity
bullet_points = generate_bullet_points(summary)
print(f"Bullet Points: {bullet_points}")
translated_text = translate_text(bullet_points, language)
print(f"Translated Text: {translated_text}")
return bullet_points, translated_text
def generate_bullet_points(summary):
print("Summary Text:", summary)
# Extract key sentences
sentences = sent_tokenize(summary)
key_sentences = sentences[:3] # Extract the first three sentences as key points
bullet_points = "\n".join(f"- {sentence}" for sentence in key_sentences)
print("Bullet Points:", bullet_points)
return bullet_points
# Create Gradio interface
iface = gr.Interface(
fn=process_text,
inputs=[
gr.Textbox(label="Input Text", placeholder="Paste your text here...", lines=10),
gr.Radio(choices=["Scientific", "Literature"], label="Summarization Model"),
gr.Dropdown(choices=["Vietnamese", "Japanese", "Thai", "Spanish"], label="Translate to", value="Vietnamese")
],
outputs=[
gr.Textbox(label="Bullet Points", lines=10),
gr.Textbox(label="Translated Bullet Points", lines=10)
],
title="Text to Bullet Points and Translation",
description="Paste any text, choose the summarization model, and optionally translate the bullet points into Vietnamese, Japanese, Thai, or Spanish."
)
iface.launch()
|