File size: 4,134 Bytes
2e727c2
c81d8ab
2e727c2
b3c7043
 
2e727c2
580e12f
 
 
2e727c2
 
 
 
 
 
 
 
3d2876f
 
931e757
3d2876f
 
b588b2c
d7f037a
 
 
9e17c04
 
 
2e727c2
 
 
 
 
 
 
b451def
 
c81d8ab
 
 
b451def
c81d8ab
7cd8f48
 
 
 
c81d8ab
 
7cd8f48
b451def
 
 
b588b2c
3d2876f
b451def
980b3f8
 
 
3d2876f
980b3f8
 
 
b451def
b588b2c
2e727c2
 
 
 
980b3f8
 
 
 
 
 
2e727c2
 
3d2876f
980b3f8
3d2876f
980b3f8
b588b2c
980b3f8
2e727c2
980b3f8
2e727c2
 
f05ba0b
 
23659c4
f05ba0b
 
 
23659c4
f05ba0b
 
23659c4
f05ba0b
23659c4
2e727c2
 
 
 
c81d8ab
3d2876f
2e727c2
 
 
c81d8ab
 
2e727c2
 
3d2876f
2e727c2
 
 
b588b2c
fb658f7
b451def
c81d8ab
7cd8f48
b3c7043
580e12f
23659c4
f05ba0b
fc9e651
3d2876f
d7f037a
9e17c04
931e757
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
from transformers import pipeline, AutoTokenizer
from sentence_transformers import SentenceTransformer, util
import nltk
from nltk.tokenize import sent_tokenize

# Download NLTK data
nltk.download('punkt')

# Translation models
translation_models = {
    'Vietnamese': "Helsinki-NLP/opus-mt-en-vi",
    'Japanese': "Helsinki-NLP/opus-mt-en-jap",
    'Thai': "Helsinki-NLP/opus-mt-en-tha",
    'Spanish': "Helsinki-NLP/opus-mt-en-es"
}

# Initialize summarization pipelines with specified models
summarization_models = {
    'Scientific': "sshleifer/distilbart-cnn-12-6",
    'Literature': "t5-small"
}

# Initialize tokenizer
tokenizer = AutoTokenizer.from_pretrained("t5-small")  # Using t5-small tokenizer for all models

# Initialize summarization pipelines
summarizers = {model: pipeline("summarization", model=model) for model in summarization_models.values()}

# Initialize translation pipeline
def get_translator(language):
    model_name = translation_models.get(language)
    if model_name:
        return pipeline("translation", model=model_name)
    return None

# Helper function to split text into chunks
def split_text(text, max_tokens=1024):
    inputs = tokenizer(text, return_tensors='pt', truncation=False)
    input_ids = inputs['input_ids'][0]
    total_tokens = len(input_ids)
    
    chunks = []
    start = 0
    while start < total_tokens:
        end = min(start + max_tokens, total_tokens)
        chunk_ids = input_ids[start:end]
        chunk_text = tokenizer.decode(chunk_ids, skip_special_tokens=True)
        chunks.append(chunk_text)
        start = end
    
    return chunks

# Helper function to summarize text
def summarize_text(text, model):
    chunks = split_text(text)
    summaries = []
    for chunk in chunks:
        try:
            summary = summarizers[model](chunk, max_length=150, min_length=40, do_sample=False)[0]['summary_text']
            summaries.append(summary)
        except Exception as e:
            print(f"Error summarizing chunk: {chunk}\nError: {e}")
    return " ".join(summaries)

# Helper function to translate text
def translate_text(text, language):
    translator = get_translator(language)
    if translator:
        try:
            translated_text = translator(text)[0]['translation_text']
            return translated_text
        except Exception as e:
            print(f"Error translating text: {text}\nError: {e}")
            return text
    return text

def process_text(input_text, model, language):
    print(f"Input text: {input_text[:500]}...")  # Show only the first 500 characters for brevity
    summary = summarize_text(input_text, model)
    print(f"Summary: {summary[:500]}...")  # Show only the first 500 characters for brevity
    bullet_points = generate_bullet_points(summary)
    print(f"Bullet Points: {bullet_points}")
    translated_text = translate_text(bullet_points, language)
    print(f"Translated Text: {translated_text}")
    return bullet_points, translated_text

def generate_bullet_points(summary):
    print("Summary Text:", summary)
    
    # Extract key sentences
    sentences = sent_tokenize(summary)
    key_sentences = sentences[:3]  # Extract the first three sentences as key points
    
    bullet_points = "\n".join(f"- {sentence}" for sentence in key_sentences)
    print("Bullet Points:", bullet_points)
    
    return bullet_points

# Create Gradio interface
iface = gr.Interface(
    fn=process_text,
    inputs=[
        gr.Textbox(label="Input Text", placeholder="Paste your text here...", lines=10),
        gr.Radio(choices=["Scientific", "Literature"], label="Summarization Model"),
        gr.Dropdown(choices=["Vietnamese", "Japanese", "Thai", "Spanish"], label="Translate to", value="Vietnamese")
    ],
    outputs=[
        gr.Textbox(label="Bullet Points", lines=10),
        gr.Textbox(label="Translated Bullet Points", lines=10)
    ],
    title="Text to Bullet Points and Translation",
    description="Paste any text, choose the summarization model, and optionally translate the bullet points into Vietnamese, Japanese, Thai, or Spanish."
)

iface.launch()