File size: 2,618 Bytes
2e727c2
 
 
 
 
 
 
 
 
 
 
 
fb658f7
 
b588b2c
2e727c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b588b2c
 
 
 
 
2e727c2
 
 
 
 
 
 
 
 
b588b2c
 
2e727c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b588b2c
2e727c2
 
 
b588b2c
fb658f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
from transformers import pipeline
from sentence_transformers import SentenceTransformer, util

# Translation models
translation_models = {
    'Vietnamese': "Helsinki-NLP/opus-mt-en-vi",
    'Japanese': "Helsinki-NLP/opus-mt-en-jap",
    'Thai': "Helsinki-NLP/opus-mt-en-tha",
    'Spanish': "Helsinki-NLP/opus-mt-en-es"
}

# Initialize summarization pipeline with a specified model
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")

# Initialize translation pipeline
def get_translator(language):
    model_name = translation_models.get(language)
    if model_name:
        return pipeline("translation", model=model_name)
    return None

# Helper function to generate bullet points
def generate_bullet_points(text):
    model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
    sentences = text.split('. ')
    embeddings = model.encode(sentences, convert_to_tensor=True)
    clusters = util.community_detection(embeddings, threshold=0.75)
    
    bullet_points = []
    for cluster in clusters:
        cluster_sentences = [sentences[idx] for idx in cluster]
        main_sentence = cluster_sentences[0] if cluster_sentences else ""
        bullet_points.append(main_sentence.strip())
    
    return "\n".join(f"- {point}" for point in bullet_points)

# Helper function to summarize text
def summarize_text(text):
    summary = summarizer(text, max_length=150, min_length=40, do_sample=False)
    return summary[0]['summary_text']

# Helper function to translate text
def translate_text(text, language):
    translator = get_translator(language)
    if translator:
        translated_text = translator(text)[0]['translation_text']
        return translated_text
    return text

def process_text(input_text, language):
    summary = summarize_text(input_text)
    bullet_points = generate_bullet_points(summary)
    translated_text = translate_text(bullet_points, language)
    return bullet_points, translated_text

# Create Gradio interface
iface = gr.Interface(
    fn=process_text,
    inputs=[
        gr.Textbox(label="Input Text", placeholder="Paste your text here..."),
        gr.Dropdown(choices=["Vietnamese", "Japanese", "Thai", "Spanish"], label="Translate to", value="Vietnamese")
    ],
    outputs=[
        gr.Textbox(label="Bullet Points"),
        gr.Textbox(label="Translated Bullet Points")
    ],
    title="Text to Bullet Points and Translation",
    description="Paste any text, and the program will summarize it into bullet points. Optionally, translate the bullet points into Vietnamese, Japanese, Thai, or Spanish."
)

iface.launch()