bullet / app.py
codeteach's picture
Update app.py
c81d8ab verified
raw
history blame
3.3 kB
import gradio as gr
from transformers import pipeline, AutoTokenizer
from sentence_transformers import SentenceTransformer, util
import math
# Translation models
translation_models = {
'Vietnamese': "Helsinki-NLP/opus-mt-en-vi",
'Japanese': "Helsinki-NLP/opus-mt-en-jap",
'Thai': "Helsinki-NLP/opus-mt-en-tha",
'Spanish': "Helsinki-NLP/opus-mt-en-es"
}
# Initialize summarization pipeline with a specified model
model_name = "sshleifer/distilbart-cnn-12-6"
summarizer = pipeline("summarization", model=model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Initialize translation pipeline
def get_translator(language):
model_name = translation_models.get(language)
if model_name:
return pipeline("translation", model=model_name)
return None
# Helper function to generate bullet points
def generate_bullet_points(text):
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
sentences = text.split('. ')
embeddings = model.encode(sentences, convert_to_tensor=True)
clusters = util.community_detection(embeddings, threshold=0.75)
bullet_points = []
for cluster in clusters:
cluster_sentences = [sentences[idx] for idx in cluster]
main_sentence = cluster_sentences[0] if cluster_sentences else ""
bullet_points.append(main_sentence.strip())
return "\n".join(f"- {point}" for point in bullet_points)
# Helper function to split text into chunks
def split_text(text, max_tokens=1024):
inputs = tokenizer(text, return_tensors='pt', truncation=False)
input_ids = inputs['input_ids'][0]
total_tokens = len(input_ids)
chunks = []
for i in range(0, total_tokens, max_tokens):
chunk_ids = input_ids[i:i+max_tokens]
chunk_text = tokenizer.decode(chunk_ids, skip_special_tokens=True)
chunks.append(chunk_text)
return chunks
# Helper function to summarize text
def summarize_text(text):
chunks = split_text(text)
summaries = [summarizer(chunk, max_length=150, min_length=40, do_sample=False)[0]['summary_text'] for chunk in chunks]
return " ".join(summaries)
# Helper function to translate text
def translate_text(text, language):
translator = get_translator(language)
if translator:
translated_text = translator(text)[0]['translation_text']
return translated_text
return text
def process_text(input_text, language):
summary = summarize_text(input_text)
bullet_points = generate_bullet_points(summary)
translated_text = translate_text(bullet_points, language)
return bullet_points, translated_text
# Create Gradio interface
iface = gr.Interface(
fn=process_text,
inputs=[
gr.Textbox(label="Input Text", placeholder="Paste your text here...", lines=10),
gr.Dropdown(choices=["Vietnamese", "Japanese", "Thai", "Spanish"], label="Translate to", value="Vietnamese")
],
outputs=[
gr.Textbox(label="Bullet Points", lines=10),
gr.Textbox(label="Translated Bullet Points", lines=10)
],
title="Text to Bullet Points and Translation",
description="Paste any text, and the program will summarize it into bullet points. Optionally, translate the bullet points into Vietnamese, Japanese, Thai, or Spanish."
)
iface.launch()